import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import tokenizers from tokenizers import models, pre_tokenizers, decoders, trainers from transformers.tokenization_utils import PreTrainedTokenizer from transformers.utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = {} class OBITokenizer(PreTrainedTokenizer): """ Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding. Args: vocab_file (`str`): Path to the vocabulary file. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP model_input_names = ["input_ids", "attention_mask"] _auto_class = "AutoTokenizer" def __init__( self, vocab_file, unk_token="", bos_token="", eos_token="", pad_token="", add_bos_token=True, add_eos_token=False, clean_up_tokenization_spaces=False, **kwargs, ): super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) self.vocab_file = vocab_file self.add_bos_token = add_bos_token self.add_eos_token = add_eos_token self.tokenizer = tokenizers.Tokenizer(models.BPE()) self.tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel() self.tokenizer.decoder = decoders.ByteLevel() self.tokenizer.post_processor = tokenizers.processors.ByteLevel() self.tokenizer.enable_truncation(max_length=512) # Adjust max_length as needed self.tokenizer.enable_padding(max_length=512, pad_token="[PAD]") # Adjust max_length and pad_token as needed self._no_prefix_space_tokens = None @property def no_prefix_space_tokens(self): if self._no_prefix_space_tokens is None: vocab = self.convert_ids_to_tokens(list(range(self.vocab_size))) self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")} return self._no_prefix_space_tokens @property def vocab_size(self): """Returns vocab size""" return len(self.tokenizer.get_vocab()) @property def bos_token_id(self) -> Optional[int]: return self.tokenizer.token_to_id("") @property def eos_token_id(self) -> Optional[int]: return self.tokenizer.token_to_id("") def get_vocab(self): """Returns vocab as a dict""" vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text): """Returns a tokenized string.""" encoding = self.tokenizer.encode(text) return encoding.ids def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.tokenizer.token_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.tokenizer.id_to_token(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) into a single string.""" return self.tokenizer.decode(tokens) def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: """ Save the vocabulary and special tokens file to a directory. Args: save_directory (`str`): The directory in which to save the vocabulary. Returns: `Tuple(str)`: Paths to the files saved. """ if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) # Save the BPE vocab # Training: Fit the tokenizer on your text data trainer = trainers.BpeTrainer(special_tokens=["", "", "","[PAD]"]) self.tokenizer.train(trainer=trainer, files=[out_vocab_file]) # Save the trained tokenizer to a file self.tokenizer.save(out_vocab_file) return (out_vocab_file,)