Model Card for Zamba2-1.2B

Zamba2-1.2B-instruct is obtained from Zamba2-1.2B by fine-tuning on instruction-following and chat datasets. Specifically:

  1. SFT of the base Zamba2-1.2B model on ultrachat_200k and Infinity-Instruct
  2. DPO of the SFT checkpoint on ultrafeedback_binarized, orca_dpo_pairs, and OpenHermesPreferences

Zamba2-1.2B-Instruct is a hybrid model composed of state-space (Mamba2) and transformer blocks.

Quick start

Prerequisites

To use Zamba2-1.2B-instruct, install transformers:

pip install transformers

To install dependencies necessary to run Mamba2 kernels, install mamba-ssm from source (due to compatibility issues with PyTorch) as well as causal-conv1d:

  1. git clone https://github.com/state-spaces/mamba.git
  2. cd mamba && git checkout v2.1.0 && pip install .
  3. pip install causal-conv1d

You can run the model without using the optimized Mamba2 kernels, but it is not recommended as it will result in significantly higher latency and memory usage.

Inference

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Instantiate model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-1.2B-instruct")
model = AutoModelForCausalLM.from_pretrained("Zyphra/Zamba2-1.2B-instruct", device_map="cuda", torch_dtype=torch.bfloat16)

# Format the input as a chat template
prompt = "What factors contributed to the fall of the Roman Empire?"
sample = [{'role': 'user', 'content': prompt}]
chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)

# Tokenize input and generate output
input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=150, return_dict_in_generate=False, output_scores=False, use_cache=True, num_beams=1, do_sample=False)
print((tokenizer.decode(outputs[0])))

Performance

Zamba2-1.2B-Instruct achieves leading instruction-following and multi-turn chat performance for a model of its size and matches strong models significantly larger. For instance, Zamba2-1.2B-Instruct outperforms Gemma2-2B-Instruct, a very strong model over 2x its size.

Model Size Aggregate MT-Bench IFEval
Zamba2-1.2B-Instruct 1.2B 59.53 41.45
Gemma2-2B-Instruct 2.7B 51.69 42.20
H2O-Danube-1.8B-Chat 1.6B 49.78 27.95
StableLM-1.6B-Chat 1.6B 49.87 33.77
SmolLM-1.7B-Instruct 1.7B 43.37 16.53
Qwen2-1.5B-Instruct 1.5B N/A 34.68

Moreover, due to its unique hybrid SSM architecture, Zamba2-1.2B-Instruct achieves extremely low inference latency and rapid generation with a significantly smaller memory footprint than comparable transformer-based models.

Zamba performance
Time to First Token (TTFT) Output Generation
image/png image/png

And memory overhead

Zamba inference and memory cost

Model Details

Zamba2-1.2B utilizes and extends our original Zamba hybrid SSM-attention architecture. The core Zamba architecture consists of a backbone of Mamba2 layers interleaved with one or more shared attention layers. This attention has shared weights to minimize the parameter cost of the model. We find that concatenating the original model embeddings to the input to this attention block improves performance, likely due to better maintenance of information across depth. The Zamba2 architecture also applies LoRA projection matrices to the shared transformer blocks to gain some additional expressivity in each block and allow each shared block to specialize slightly to its own unique position while keeping the additional parameter overhead small.

Zamba architecture

Note: this is a temporary HuggingFace implementation of Zamba2-1.2B. It may not yet be fully compatible with all frameworks and tools intended to interface with HuggingFace models.

A standalone Pytorch implementation of Zamba2-1.2B may be found here.

Downloads last month
110
Safetensors
Model size
1.22B params
Tensor type
F32
·
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for Zyphra/Zamba2-1.2B-instruct

Base model

Zyphra/Zamba2-1.2B
Finetuned
(1)
this model
Finetunes
1 model

Datasets used to train Zyphra/Zamba2-1.2B-instruct