metadata
license: mit
base_model: prajjwal1/bert-tiny
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: TestForColab
results: []
TestForColab
This model is a fine-tuned version of prajjwal1/bert-tiny on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2129
- Accuracy: 0.94
- F1: 0.9394
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.01 | 50 | 0.6913 | 0.55 | 0.3903 |
No log | 0.02 | 100 | 0.6909 | 0.59 | 0.5186 |
No log | 0.03 | 150 | 0.6934 | 0.45 | 0.2793 |
No log | 0.04 | 200 | 0.6889 | 0.57 | 0.5709 |
No log | 0.05 | 250 | 0.6818 | 0.56 | 0.5607 |
No log | 0.06 | 300 | 0.6854 | 0.56 | 0.5607 |
No log | 0.07 | 350 | 0.6878 | 0.56 | 0.5607 |
No log | 0.08 | 400 | 0.7014 | 0.56 | 0.5607 |
No log | 0.09 | 450 | 0.6797 | 0.56 | 0.5607 |
0.6799 | 0.1 | 500 | 0.6731 | 0.56 | 0.5607 |
0.6799 | 0.11 | 550 | 0.6490 | 0.64 | 0.6203 |
0.6799 | 0.12 | 600 | 0.6456 | 0.71 | 0.7049 |
0.6799 | 0.13 | 650 | 0.6259 | 0.64 | 0.6203 |
0.6799 | 0.14 | 700 | 0.5264 | 0.83 | 0.8304 |
0.6799 | 0.15 | 750 | 0.4671 | 0.83 | 0.8304 |
0.6799 | 0.16 | 800 | 0.3387 | 0.94 | 0.9394 |
0.6799 | 0.17 | 850 | 0.2935 | 0.94 | 0.9394 |
0.6799 | 0.18 | 900 | 0.2604 | 0.94 | 0.9394 |
0.6799 | 0.19 | 950 | 0.2443 | 0.94 | 0.9394 |
0.4884 | 0.2 | 1000 | 0.2355 | 0.94 | 0.9394 |
0.4884 | 0.2 | 1050 | 0.2286 | 0.94 | 0.9394 |
0.4884 | 0.21 | 1100 | 0.2240 | 0.94 | 0.9394 |
0.4884 | 0.22 | 1150 | 0.2201 | 0.94 | 0.9394 |
0.4884 | 0.23 | 1200 | 0.2165 | 0.94 | 0.9394 |
0.4884 | 0.24 | 1250 | 0.2129 | 0.94 | 0.9394 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0