MM-MM03

This model is a fine-tuned version of prajjwal1/bert-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6872
  • Accuracy: 0.57
  • F1: 0.5203

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.0 50 0.6915 0.53 0.3672
No log 0.01 100 0.6923 0.53 0.3672
No log 0.01 150 0.6919 0.53 0.3672
No log 0.01 200 0.6923 0.54 0.4195
No log 0.02 250 0.6924 0.6 0.5777
No log 0.02 300 0.6908 0.54 0.3892
No log 0.03 350 0.6893 0.55 0.4104
No log 0.03 400 0.6911 0.57 0.5437
No log 0.03 450 0.6904 0.57 0.5482
0.6938 0.04 500 0.6981 0.47 0.3005
0.6938 0.04 550 0.6953 0.47 0.3005
0.6938 0.04 600 0.6891 0.56 0.5252
0.6938 0.05 650 0.6871 0.55 0.4817
0.6938 0.05 700 0.6898 0.56 0.4975
0.6938 0.06 750 0.6899 0.55 0.4817
0.6938 0.06 800 0.6906 0.51 0.5102
0.6938 0.06 850 0.6934 0.48 0.48
0.6938 0.07 900 0.6889 0.55 0.4817
0.6938 0.07 950 0.6996 0.47 0.3175
0.6929 0.07 1000 0.6894 0.59 0.5601
0.6929 0.08 1050 0.6941 0.5 0.4777
0.6929 0.08 1100 0.6927 0.49 0.4896
0.6929 0.08 1150 0.6916 0.49 0.4903
0.6929 0.09 1200 0.6874 0.56 0.5252
0.6929 0.09 1250 0.6872 0.57 0.5203

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
11
Safetensors
Model size
4.39M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Zainab984/MM-MM03

Finetuned
(58)
this model