Yonadav's picture
update model card README.md
4ea5093
|
raw
history blame
3.52 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - bleu
model-index:
  - name: en_to_kjven_translator
    results: []

en_to_kjven_translator

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9847
  • Bleu: 20.6579
  • Gen Len: 18.0017

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
1.5437 1.0 6105 1.3910 17.168 17.9611
1.4232 2.0 12210 1.2885 18.0224 17.9691
1.3474 3.0 18315 1.2305 18.5705 17.9751
1.32 4.0 24420 1.1890 18.942 17.981
1.2733 5.0 30525 1.1597 19.2091 17.976
1.2347 6.0 36630 1.1324 19.4233 17.9852
1.2168 7.0 42735 1.1134 19.5744 17.9872
1.1951 8.0 48840 1.0967 19.7628 17.9841
1.1694 9.0 54945 1.0813 19.8682 17.9898
1.1539 10.0 61050 1.0681 20.0338 17.989
1.1447 11.0 67155 1.0566 20.1025 17.9912
1.1164 12.0 73260 1.0477 20.2067 17.9904
1.1157 13.0 79365 1.0390 20.251 17.9946
1.1145 14.0 85470 1.0310 20.3136 17.9952
1.0927 15.0 91575 1.0252 20.3417 17.9934
1.0837 16.0 97680 1.0185 20.407 17.9909
1.0776 17.0 103785 1.0136 20.4439 17.9955
1.0753 18.0 109890 1.0084 20.4762 17.9956
1.0569 19.0 115995 1.0039 20.4643 17.9995
1.0676 20.0 122100 1.0001 20.5041 18.002
1.0593 21.0 128205 0.9977 20.5265 18.0009
1.0555 22.0 134310 0.9952 20.5503 18.0018
1.0302 23.0 140415 0.9927 20.5968 18.0005
1.045 24.0 146520 0.9906 20.6097 18.0012
1.0407 25.0 152625 0.9889 20.6209 18.0015
1.0282 26.0 158730 0.9867 20.6371 18.0018
1.024 27.0 164835 0.9862 20.6404 18.0022
1.0411 28.0 170940 0.9851 20.6558 18.0018
1.0292 29.0 177045 0.9848 20.6559 18.0016
1.0149 30.0 183150 0.9847 20.6579 18.0017

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3