metadata
license: mit
datasets:
- HuggingFaceH4/ultrachat_200k
language:
- en
base_model: mistralai/Mistral-7B-v0.1
pipeline_tag: text-generation
zephyr-7b-sft-full-spin-iter1
This model is a self-play fine-tuned model at iteration 1 from alignment-handbook/zephyr-7b-sft-full using synthetic data based on on the HuggingFaceH4/ultrachat_200k dataset.
Model Details
Model Description
- Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets.
- Language(s) (NLP): Primarily English
- License: MIT
- Finetuned from model: alignment-handbook/zephyr-7b-sft-full (based on mistralai/Mistral-7B-v0.1)
Training hyperparameters
The following hyperparameters were used during training:
learning_rate: 5e-07 train_batch_size: 8 seed: 42 distributed_type: multi-GPU num_devices: 8 total_train_batch_size: 64 optimizer: RMSProp lr_scheduler_type: linear lr_scheduler_warmup_ratio: 0.1 num_epochs: 2.0
Citation
@misc{chen2024selfplay,
title={Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models},
author={Zixiang Chen and Yihe Deng and Huizhuo Yuan and Kaixuan Ji and Quanquan Gu},
year={2024},
eprint={2401.01335},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Open LLM Leaderboard Evaluation Results
Metric | Value |
---|---|
Avg. | 62.86 |
ARC (25-shot) | 65.87 |
HellaSwag (10-shot) | 85.44 |
MMLU (5-shot) | 60.95 |
TruthfulQA (0-shot) | 57.39 |
Winogrande (5-shot) | 76.64 |
GSM8K (5-shot) | 30.86 |