MPNet base trained on AllNLI triplets
This is a sentence-transformers model finetuned from prajjwal1/bert-tiny on the pair_similarity_new_1231 dataset. It maps sentences & paragraphs to a 128-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: prajjwal1/bert-tiny
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 128 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 128, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Tien09/tiny_bert_ft_sim_score_1231_1")
# Run inference
sentences = [
'This card cannot be Normal Summoned or Set. This card cannot be Special Summoned except by the effect of "The First Sarcophagus". When this card is Special Summoned, you can Special Summon up to 4 Level 2 or lower Zombie-Type Normal Monsters from your GY.',
'Target 1 Level 4 or lower "Magistus" monster in your GY; Special Summon it. If a "Magistus" card(s) in your Spell & Trap Zone would be destroyed by your opponent\'s card effect, you can banish this card from your GY instead. You can only use each effect of "Magistus Vritra" once per turn.',
"When this card is Normal Summoned, you can remove from play 1 Psychic-Type monster from your Deck. This card's Level becomes the Level of that monster.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 128]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
pair_similarity_new_1231
- Dataset: pair_similarity_new_1231 at 757b53a
- Size: 8,959 training samples
- Columns:
effect_text
,score
, andeffect_text2
- Approximate statistics based on the first 1000 samples:
effect_text score effect_text2 type string float string details - min: 9 tokens
- mean: 73.57 tokens
- max: 204 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- min: 8 tokens
- mean: 73.28 tokens
- max: 181 tokens
- Samples:
effect_text score effect_text2 When your opponent's monster attacks a face-up Level 4 or lower Toon Monster on your side of the field, you can make the attack a direct attack to your Life Points.
0.0
Cannot be used as material for a Fusion, Synchro, or Xyz Summon. Cannot be Tributed while face-up in the Monster Zone. If this card is sent to the GY as material for a Link Summon: Special Summon this card in Defense Position, to the opponent's field of the player that Link Summoned. You can only use this effect of "Click & Echo" twice per turn. While this card, that was Summoned by its effect, is in the Monster Zone, you must keep your hand revealed.
When your opponent Special Summons a monster, you can discard 1 card to Special Summon this card from your hand. Your opponent cannot remove cards from play.
0.0
Once per turn you can place 2 Venom Counters on 1 monster your opponent controls. If you activate this effect, this card cannot attack during this turn.
Mystical Elf" + "Curtain of the Dark Ones
0.0
If you Normal or Special Summon a "U.A." monster(s) (except during the Damage Step): You can Special Summon this card from your hand. If this card is Special Summoned: You can activate 1 of these effects.
● Target 1 card on the field; destroy it.
● Negate the effects of all face-up monsters on the field until the end of this turn, except "U.A." monsters.
You can only use each effect of "U.A. Player Manager" once per turn. - Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
pair_similarity_new_1231
- Dataset: pair_similarity_new_1231 at 757b53a
- Size: 1,920 evaluation samples
- Columns:
effect_text
,score
, andeffect_text2
- Approximate statistics based on the first 1000 samples:
effect_text score effect_text2 type string float string details - min: 6 tokens
- mean: 72.29 tokens
- max: 190 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- min: 5 tokens
- mean: 70.39 tokens
- max: 219 tokens
- Samples:
effect_text score effect_text2 2+ Level 4 monsters
This Xyz Summoned card gains 500 ATK x the total Link Rating of Link Monsters linked to this card. You can detach 2 materials from this card, then target 1 4 Cyberse Link Monster in your GY; Special Summon it to your field so it points to this card, also you cannot Special Summon other monsters or attack directly for the rest of this turn.1.0
3 Level 4 monsters Once per turn, you can also Xyz Summon "Zoodiac Tigermortar" by using 1 "Zoodiac" monster you control with a different name as Xyz Material. (If you used an Xyz Monster, any Xyz Materials attached to it also become Xyz Materials on this card.) This card gains ATK and DEF equal to the ATK and DEF of all "Zoodiac" monsters attached to it as Materials. Once per turn: You can detach 1 Xyz Material from this card, then target 1 Xyz Monster you control and 1 "Zoodiac" monster in your GY; attach that "Zoodiac" monster to that Xyz Monster as Xyz Material.
1 Tuner + 1 or more non-Tuner Pendulum Monsters Once per turn: You can target 1 Pendulum Monster on the field or 1 card in the Pendulum Zone; destroy it, and if you do, shuffle 1 card on the field into the Deck. Once per turn: You can Special Summon 1 "Dracoslayer" monster from your Deck in Defense Position, but it cannot be used as a Synchro Material for a Summon.
0.5
You can Ritual Summon this card with a "Recipe" card. If this card is Special Summoned: You can target 1 Spell/Trap on the field; destroy it. When a card or effect is activated that targets this card on the field, or when this card is targeted for an attack (Quick Effect): You can Tribute this card and 1 Attack Position monster on either field, and if you do, Special Summon 1 Level 3 or 4 "Nouvelles" Ritual Monster from your hand or Deck. You can only use each effect of "Confiras de Nouvelles" once per turn.
If you control an Illusion or Spellcaster monster: Add 1 "White Forest" monster from your Deck to your hand. If this card is sent to the GY to activate a monster effect: You can Set this card. You can only use each effect of "Tales of the White Forest" once per turn.
0.0
Once per turn, when your opponent activates a Trap Card, you can destroy the Trap Card and inflict 800 damage to your opponent.
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 15warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 15max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.1786 | 100 | 4.6161 | 4.4244 |
0.3571 | 200 | 4.5391 | 4.3765 |
0.5357 | 300 | 4.3857 | 4.3268 |
0.7143 | 400 | 4.4125 | 4.2893 |
0.8929 | 500 | 4.2914 | 4.2755 |
1.0714 | 600 | 4.3029 | 4.2674 |
1.25 | 700 | 4.3832 | 4.2538 |
1.4286 | 800 | 4.2629 | 4.2410 |
1.6071 | 900 | 4.2343 | 4.2204 |
1.7857 | 1000 | 4.3121 | 4.2025 |
1.9643 | 1100 | 4.1853 | 4.1866 |
2.1429 | 1200 | 4.257 | 4.1712 |
2.3214 | 1300 | 4.269 | 4.1560 |
2.5 | 1400 | 4.1065 | 4.1373 |
2.6786 | 1500 | 4.1499 | 4.1204 |
2.8571 | 1600 | 4.1191 | 4.1044 |
3.0357 | 1700 | 4.0988 | 4.0989 |
3.2143 | 1800 | 4.1788 | 4.0736 |
3.3929 | 1900 | 4.0597 | 4.0633 |
3.5714 | 2000 | 4.0105 | 4.0565 |
3.75 | 2100 | 4.1035 | 4.0299 |
3.9286 | 2200 | 3.963 | 4.0527 |
4.1071 | 2300 | 4.0127 | 4.0191 |
4.2857 | 2400 | 4.0932 | 3.9967 |
4.4643 | 2500 | 3.9348 | 3.9900 |
4.6429 | 2600 | 3.9643 | 3.9798 |
4.8214 | 2700 | 3.9502 | 3.9671 |
5.0 | 2800 | 3.8734 | 3.9682 |
5.1786 | 2900 | 3.9211 | 3.9837 |
5.3571 | 3000 | 3.9833 | 3.9463 |
5.5357 | 3100 | 3.805 | 3.9531 |
5.7143 | 3200 | 3.9045 | 3.9353 |
5.8929 | 3300 | 3.7978 | 3.9654 |
6.0714 | 3400 | 3.8802 | 3.9545 |
6.25 | 3500 | 3.9052 | 3.9242 |
6.4286 | 3600 | 3.8237 | 3.9042 |
6.6071 | 3700 | 3.7338 | 3.9315 |
6.7857 | 3800 | 3.855 | 3.9185 |
6.9643 | 3900 | 3.7611 | 3.9310 |
7.1429 | 4000 | 3.8459 | 3.9072 |
7.3214 | 4100 | 3.8968 | 3.8727 |
7.5 | 4200 | 3.6306 | 3.9094 |
7.6786 | 4300 | 3.7761 | 3.8921 |
7.8571 | 4400 | 3.728 | 3.8924 |
8.0357 | 4500 | 3.7182 | 3.8869 |
8.2143 | 4600 | 3.7695 | 3.9223 |
8.3929 | 4700 | 3.7255 | 3.8472 |
8.5714 | 4800 | 3.6354 | 3.8880 |
8.75 | 4900 | 3.7751 | 3.8574 |
8.9286 | 5000 | 3.646 | 3.8901 |
9.1071 | 5100 | 3.7268 | 3.8599 |
9.2857 | 5200 | 3.7616 | 3.8432 |
9.4643 | 5300 | 3.6173 | 3.8403 |
9.6429 | 5400 | 3.6365 | 3.8573 |
9.8214 | 5500 | 3.6667 | 3.8416 |
10.0 | 5600 | 3.6456 | 3.8467 |
10.1786 | 5700 | 3.6096 | 3.8817 |
10.3571 | 5800 | 3.7093 | 3.8397 |
10.5357 | 5900 | 3.4805 | 3.8649 |
10.7143 | 6000 | 3.6849 | 3.8437 |
10.8929 | 6100 | 3.57 | 3.8676 |
11.0714 | 6200 | 3.6915 | 3.8439 |
11.25 | 6300 | 3.6812 | 3.8451 |
11.4286 | 6400 | 3.5948 | 3.8374 |
11.6071 | 6500 | 3.5601 | 3.8342 |
11.7857 | 6600 | 3.6627 | 3.8348 |
11.9643 | 6700 | 3.5013 | 3.8493 |
12.1429 | 6800 | 3.6723 | 3.8404 |
12.3214 | 6900 | 3.6744 | 3.8312 |
12.5 | 7000 | 3.521 | 3.8233 |
12.6786 | 7100 | 3.5399 | 3.8336 |
12.8571 | 7200 | 3.5862 | 3.8304 |
13.0357 | 7300 | 3.5598 | 3.8357 |
13.2143 | 7400 | 3.6152 | 3.8446 |
13.3929 | 7500 | 3.6303 | 3.8178 |
13.5714 | 7600 | 3.4542 | 3.8314 |
13.75 | 7700 | 3.6197 | 3.8265 |
13.9286 | 7800 | 3.4931 | 3.8349 |
14.1071 | 7900 | 3.6109 | 3.8310 |
14.2857 | 8000 | 3.6087 | 3.8320 |
14.4643 | 8100 | 3.5136 | 3.8299 |
14.6429 | 8200 | 3.5176 | 3.8318 |
14.8214 | 8300 | 3.607 | 3.8286 |
15.0 | 8400 | 3.5206 | 3.8300 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Tien09/tiny_bert_ft_sim_score_1231_1
Base model
prajjwal1/bert-tiny