|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
datasets: [] |
|
widget: |
|
- source_sentence: clinician thinks the patient is homeless |
|
sentences: |
|
- '- Ms. ___ was homeless at the time of this admission.' |
|
- This is ___ year old single homeless woman, previously diagnosed with borderline |
|
personality disorder with chronic affective instability, reactive mood, impulsivity, |
|
SIB (ingesting objects while hospitalized), recently discharged from ___ on ___, |
|
___ client, who presented to ___ on a ___ with worsening mood, threats of suicide |
|
via cutting her legs off, as well as thoughts of wanting to hurt _ |
|
- Patient reports that her apartment is bugged, she has camera in her television, |
|
and a helicopter is reading minds. |
|
- source_sentence: assigned a case manager for housing |
|
sentences: |
|
- 'Home With Service Facility:' |
|
- We consulted social work, psychiatry, and the case managers, who are working with |
|
the hospital attorneys to acquire safer housing options with greater oversight |
|
from health care professionals. . |
|
- Has not established care with |
|
- source_sentence: has been homeless |
|
sentences: |
|
- He reports being homeless, living in an empty garage near his sister. |
|
- To complicate matters, patient's main support/roommate will be moving out of country |
|
soon, so he will no longer be able to live in his apartment. |
|
- 'Axis IV: homelessness' |
|
- source_sentence: homelessness |
|
sentences: |
|
- Does not identify any acute stressors, but describes no longer being able to tolerate |
|
being homeless (lack of food/clothing/showers). |
|
- Unclear how reliable his group home is administering meds, notably nursing is |
|
quite limited. |
|
- Case management assisted in formulated a plan with ___ that would allow the patient's |
|
___ be the first responder when issues regarding her these two problems arise. |
|
- source_sentence: assisted…housing benefits |
|
sentences: |
|
- As a result, patient is currently homeless. |
|
- 'Home With Service Facility:' |
|
- Patient with multiple admissions in the past several months, homeless. |
|
pipeline_tag: sentence-similarity |
|
--- |
|
|
|
# SentenceTransformer (all-mpnet-base-v2) fine-tuned using clinical naatives |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from |
|
[sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). |
|
It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, |
|
semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d --> |
|
- **Maximum Sequence Length:** 384 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Shobhank-iiitdwd/Clinical_sentence_transformers_mpnet_base_v2") |
|
# Run inference |
|
sentences = [ |
|
'assisted…housing benefits', |
|
'Home With Service Facility:', |
|
'Patient with multiple admissions in the past several months, homeless.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 100 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 100 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | |
|
|:-------:|:-----:|:-------------:| |
|
| 0.6887 | 500 | 3.5133 | |
|
| 1.3774 | 1000 | 3.2727 | |
|
| 2.0661 | 1500 | 3.2238 | |
|
| 2.7548 | 2000 | 3.1758 | |
|
| 3.4435 | 2500 | 3.1582 | |
|
| 4.1322 | 3000 | 3.1385 | |
|
| 4.8209 | 3500 | 3.1155 | |
|
| 5.5096 | 4000 | 3.1034 | |
|
| 6.1983 | 4500 | 3.091 | |
|
| 6.8871 | 5000 | 3.0768 | |
|
| 7.5758 | 5500 | 3.065 | |
|
| 8.2645 | 6000 | 3.0632 | |
|
| 8.9532 | 6500 | 3.0566 | |
|
| 9.6419 | 7000 | 3.0433 | |
|
| 0.6887 | 500 | 3.0536 | |
|
| 1.3774 | 1000 | 3.0608 | |
|
| 2.0661 | 1500 | 3.0631 | |
|
| 2.7548 | 2000 | 3.0644 | |
|
| 3.4435 | 2500 | 3.0667 | |
|
| 4.1322 | 3000 | 3.07 | |
|
| 4.8209 | 3500 | 3.0682 | |
|
| 5.5096 | 4000 | 3.0718 | |
|
| 6.1983 | 4500 | 3.0719 | |
|
| 6.8871 | 5000 | 3.0685 | |
|
| 7.5758 | 5500 | 3.0723 | |
|
| 8.2645 | 6000 | 3.0681 | |
|
| 8.9532 | 6500 | 3.0633 | |
|
| 9.6419 | 7000 | 3.0642 | |
|
| 10.3306 | 7500 | 3.0511 | |
|
| 11.0193 | 8000 | 3.0463 | |
|
| 11.7080 | 8500 | 3.0301 | |
|
| 12.3967 | 9000 | 3.0163 | |
|
| 13.0854 | 9500 | 3.0059 | |
|
| 13.7741 | 10000 | 2.9845 | |
|
| 14.4628 | 10500 | 2.9705 | |
|
| 15.1515 | 11000 | 2.9536 | |
|
| 15.8402 | 11500 | 2.9263 | |
|
| 16.5289 | 12000 | 2.9199 | |
|
| 17.2176 | 12500 | 2.8989 | |
|
| 17.9063 | 13000 | 2.8818 | |
|
| 18.5950 | 13500 | 2.8735 | |
|
| 19.2837 | 14000 | 2.852 | |
|
| 19.9725 | 14500 | 2.8315 | |
|
| 20.6612 | 15000 | 2.8095 | |
|
| 21.3499 | 15500 | 2.7965 | |
|
| 22.0386 | 16000 | 2.7802 | |
|
| 22.7273 | 16500 | 2.7527 | |
|
| 23.4160 | 17000 | 2.7547 | |
|
| 24.1047 | 17500 | 2.7377 | |
|
| 24.7934 | 18000 | 2.7035 | |
|
| 25.4821 | 18500 | 2.7102 | |
|
| 26.1708 | 19000 | 2.6997 | |
|
| 26.8595 | 19500 | 2.6548 | |
|
| 27.5482 | 20000 | 2.6704 | |
|
| 28.2369 | 20500 | 2.6624 | |
|
| 28.9256 | 21000 | 2.6306 | |
|
| 29.6143 | 21500 | 2.6358 | |
|
| 30.3030 | 22000 | 2.634 | |
|
| 30.9917 | 22500 | 2.6089 | |
|
| 31.6804 | 23000 | 2.607 | |
|
| 32.3691 | 23500 | 2.6246 | |
|
| 33.0579 | 24000 | 2.5947 | |
|
| 33.7466 | 24500 | 2.5798 | |
|
| 34.4353 | 25000 | 2.6025 | |
|
| 35.1240 | 25500 | 2.5824 | |
|
| 35.8127 | 26000 | 2.5698 | |
|
| 36.5014 | 26500 | 2.5711 | |
|
| 37.1901 | 27000 | 2.5636 | |
|
| 37.8788 | 27500 | 2.5387 | |
|
| 38.5675 | 28000 | 2.5472 | |
|
| 39.2562 | 28500 | 2.5455 | |
|
| 39.9449 | 29000 | 2.5204 | |
|
| 40.6336 | 29500 | 2.524 | |
|
| 41.3223 | 30000 | 2.5246 | |
|
| 42.0110 | 30500 | 2.5125 | |
|
| 42.6997 | 31000 | 2.5042 | |
|
| 43.3884 | 31500 | 2.5165 | |
|
| 44.0771 | 32000 | 2.5187 | |
|
| 44.7658 | 32500 | 2.4975 | |
|
| 45.4545 | 33000 | 2.5048 | |
|
| 46.1433 | 33500 | 2.521 | |
|
| 46.8320 | 34000 | 2.4825 | |
|
| 47.5207 | 34500 | 2.5034 | |
|
| 48.2094 | 35000 | 2.5049 | |
|
| 48.8981 | 35500 | 2.4886 | |
|
| 49.5868 | 36000 | 2.4992 | |
|
| 50.2755 | 36500 | 2.5099 | |
|
| 50.9642 | 37000 | 2.489 | |
|
| 51.6529 | 37500 | 2.4825 | |
|
| 52.3416 | 38000 | 2.4902 | |
|
| 53.0303 | 38500 | 2.4815 | |
|
| 53.7190 | 39000 | 2.4723 | |
|
| 54.4077 | 39500 | 2.4921 | |
|
| 55.0964 | 40000 | 2.4763 | |
|
| 55.7851 | 40500 | 2.4692 | |
|
| 56.4738 | 41000 | 2.4831 | |
|
| 57.1625 | 41500 | 2.4705 | |
|
| 57.8512 | 42000 | 2.4659 | |
|
| 58.5399 | 42500 | 2.4804 | |
|
| 59.2287 | 43000 | 2.4582 | |
|
| 59.9174 | 43500 | 2.4544 | |
|
| 60.6061 | 44000 | 2.4712 | |
|
| 61.2948 | 44500 | 2.4478 | |
|
| 61.9835 | 45000 | 2.4428 | |
|
| 62.6722 | 45500 | 2.4558 | |
|
| 63.3609 | 46000 | 2.4428 | |
|
| 64.0496 | 46500 | 2.4399 | |
|
| 64.7383 | 47000 | 2.4529 | |
|
| 65.4270 | 47500 | 2.4374 | |
|
| 66.1157 | 48000 | 2.4543 | |
|
| 66.8044 | 48500 | 2.4576 | |
|
| 67.4931 | 49000 | 2.4426 | |
|
| 68.1818 | 49500 | 2.4698 | |
|
| 68.8705 | 50000 | 2.4604 | |
|
| 69.5592 | 50500 | 2.4515 | |
|
| 70.2479 | 51000 | 2.4804 | |
|
| 70.9366 | 51500 | 2.4545 | |
|
| 71.6253 | 52000 | 2.4523 | |
|
| 72.3140 | 52500 | 2.4756 | |
|
| 73.0028 | 53000 | 2.4697 | |
|
| 73.6915 | 53500 | 2.4536 | |
|
| 74.3802 | 54000 | 2.4866 | |
|
| 75.0689 | 54500 | 2.471 | |
|
| 75.7576 | 55000 | 2.483 | |
|
| 76.4463 | 55500 | 2.5002 | |
|
| 77.1350 | 56000 | 2.4849 | |
|
| 77.8237 | 56500 | 2.4848 | |
|
| 78.5124 | 57000 | 2.5047 | |
|
| 79.2011 | 57500 | 2.5143 | |
|
| 79.8898 | 58000 | 2.4879 | |
|
| 80.5785 | 58500 | 2.5093 | |
|
| 81.2672 | 59000 | 2.5247 | |
|
| 81.9559 | 59500 | 2.4915 | |
|
| 82.6446 | 60000 | 2.5124 | |
|
| 83.3333 | 60500 | 2.5056 | |
|
| 84.0220 | 61000 | 2.4767 | |
|
| 84.7107 | 61500 | 2.5068 | |
|
| 85.3994 | 62000 | 2.5173 | |
|
| 86.0882 | 62500 | 2.4911 | |
|
| 86.7769 | 63000 | 2.526 | |
|
| 87.4656 | 63500 | 2.5313 | |
|
| 88.1543 | 64000 | 2.5312 | |
|
| 88.8430 | 64500 | 2.5735 | |
|
| 89.5317 | 65000 | 2.5873 | |
|
| 90.2204 | 65500 | 2.6395 | |
|
| 90.9091 | 66000 | 2.7914 | |
|
| 91.5978 | 66500 | 2.6729 | |
|
| 92.2865 | 67000 | 2.9846 | |
|
| 92.9752 | 67500 | 2.9259 | |
|
| 93.6639 | 68000 | 2.8845 | |
|
| 94.3526 | 68500 | 2.9906 | |
|
| 95.0413 | 69000 | 2.9534 | |
|
| 95.7300 | 69500 | 2.9857 | |
|
| 96.4187 | 70000 | 3.0559 | |
|
| 97.1074 | 70500 | 2.9919 | |
|
| 97.7961 | 71000 | 3.0435 | |
|
| 98.4848 | 71500 | 3.0534 | |
|
| 99.1736 | 72000 | 3.0169 | |
|
| 99.8623 | 72500 | 3.0264 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.11 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.0.1 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
|
|
|