SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
order tracking
  • 'What is the delivery status for my order placed using phone number 123456789?'
  • 'I ordered the Cake Decorating Kit 4 days ago, can you provide the tracking information?'
  • 'I ordered the Cake Stands 2 days ago with order no 54321 how long will it take to deliver?'
general faq
  • 'How do the traditional hand-woven Banarasi sarees from HKV Benaras differ from those made by machine-driven industries?'
  • 'What are the key factors to consider when developing a personalized diet plan for weight loss?'
  • "Are there any scientific studies that support Green Tea's role in preventing Alzheimer's and Parkinson's diseases?"
product policy
  • 'How do you use the information collected through tracking tools like Google Analytics and cookies?'
  • 'How does bakeyy handle returns for items that were purchased with a thank you discount?'
  • 'What is the procedure for returning a product that was part of a special occasion promotion?'
product discoverability
  • 'What is the price of the organic honey?'
  • 'Variety of cookie boxes'
  • 'what apparells do you have from Drew House'
product faq
  • 'What is the price of the bestseller honey?'
  • 'Do you offer any bulk discounts on organic honey?'
  • 'Are the big plum cake boxes available in packs of 30?'

Evaluation

Metrics

Label Accuracy
all 0.84

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Shankhdhar/classifier_woog_firstbud_updated")
# Run inference
preds = model("cookie boxes with dividers")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 11.9760 28
Label Training Sample Count
general faq 24
order tracking 34
product discoverability 50
product faq 50
product policy 50

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0005 1 0.2048 -
0.0235 50 0.2874 -
0.0470 100 0.126 -
0.0705 150 0.0388 -
0.0940 200 0.0786 -
0.1175 250 0.0049 -
0.1410 300 0.0048 -
0.1646 350 0.0018 -
0.1881 400 0.0011 -
0.2116 450 0.0004 -
0.2351 500 0.0006 -
0.2586 550 0.0005 -
0.2821 600 0.0012 -
0.3056 650 0.0004 -
0.3291 700 0.0003 -
0.3526 750 0.0002 -
0.3761 800 0.0002 -
0.3996 850 0.0002 -
0.4231 900 0.0002 -
0.4466 950 0.0008 -
0.4701 1000 0.0002 -
0.4937 1050 0.0003 -
0.5172 1100 0.0001 -
0.5407 1150 0.0002 -
0.5642 1200 0.0001 -
0.5877 1250 0.0001 -
0.6112 1300 0.0001 -
0.6347 1350 0.0004 -
0.6582 1400 0.0002 -
0.6817 1450 0.0001 -
0.7052 1500 0.0002 -
0.7287 1550 0.0001 -
0.7522 1600 0.0001 -
0.7757 1650 0.0001 -
0.7992 1700 0.0001 -
0.8228 1750 0.0001 -
0.8463 1800 0.0001 -
0.8698 1850 0.0001 -
0.8933 1900 0.0001 -
0.9168 1950 0.0001 -
0.9403 2000 0.0001 -
0.9638 2050 0.0001 -
0.9873 2100 0.0002 -
1.0108 2150 0.0001 -
1.0343 2200 0.0001 -
1.0578 2250 0.0001 -
1.0813 2300 0.0001 -
1.1048 2350 0.0001 -
1.1283 2400 0.0 -
1.1519 2450 0.0001 -
1.1754 2500 0.0 -
1.1989 2550 0.0001 -
1.2224 2600 0.0007 -
1.2459 2650 0.0001 -
1.2694 2700 0.0001 -
1.2929 2750 0.0001 -
1.3164 2800 0.0001 -
1.3399 2850 0.0001 -
1.3634 2900 0.0001 -
1.3869 2950 0.0001 -
1.4104 3000 0.0001 -
1.4339 3050 0.0001 -
1.4575 3100 0.0001 -
1.4810 3150 0.0001 -
1.5045 3200 0.0001 -
1.5280 3250 0.0001 -
1.5515 3300 0.0001 -
1.5750 3350 0.0001 -
1.5985 3400 0.0001 -
1.6220 3450 0.0001 -
1.6455 3500 0.0001 -
1.6690 3550 0.0001 -
1.6925 3600 0.0001 -
1.7160 3650 0.0 -
1.7395 3700 0.0001 -
1.7630 3750 0.0001 -
1.7866 3800 0.0 -
1.8101 3850 0.0001 -
1.8336 3900 0.0001 -
1.8571 3950 0.0 -
1.8806 4000 0.0001 -
1.9041 4050 0.0001 -
1.9276 4100 0.0001 -
1.9511 4150 0.0001 -
1.9746 4200 0.0001 -
1.9981 4250 0.0001 -

Framework Versions

  • Python: 3.10.13
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.2.2+cu121
  • Datasets: 2.19.2
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
318
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Shankhdhar/classifier_woog_firstbud_updated

Finetuned
(270)
this model

Evaluation results