Sandiago21's picture
update model card README.md
ecca1bb
|
raw
history blame
3.41 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - fleurs
model-index:
  - name: speecht5_finetuned_google_fleurs_greek
    results: []

speecht5_finetuned_google_fleurs_greek

This model is a fine-tuned version of microsoft/speecht5_tts on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3419

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss
0.5791 0.99 106 0.4965
0.4962 2.0 213 0.4057
0.4719 3.0 320 0.3929
0.4387 4.0 427 0.3793
0.4366 4.99 533 0.3749
0.4216 6.0 640 0.3715
0.4238 7.0 747 0.3663
0.4199 8.0 854 0.3622
0.415 8.99 960 0.3595
0.409 10.0 1067 0.3579
0.4128 11.0 1174 0.3526
0.4065 12.0 1281 0.3554
0.4023 12.99 1387 0.3573
0.4028 14.0 1494 0.3482
0.407 15.0 1601 0.3487
0.4018 16.0 1708 0.3518
0.3987 16.99 1814 0.3483
0.3966 18.0 1921 0.3461
0.3931 19.0 2028 0.3534
0.3956 20.0 2135 0.3473
0.396 20.99 2241 0.3451
0.3963 22.0 2348 0.3435
0.3928 23.0 2455 0.3468
0.39 24.0 2562 0.3452
0.3875 24.99 2668 0.3430
0.405 26.0 2775 0.3458
0.3857 27.0 2882 0.3444
0.3869 28.0 2989 0.3436
0.3813 28.99 3095 0.3419
0.3859 30.0 3202 0.3430
0.3965 31.0 3309 0.3419
0.3873 32.0 3416 0.3432
0.3894 32.99 3522 0.3423
0.3855 34.0 3629 0.3412
0.3857 35.0 3736 0.3423
0.3856 36.0 3843 0.3420
0.3842 36.99 3949 0.3418
0.3827 38.0 4056 0.3421
0.389 39.0 4163 0.3423
0.3881 39.72 4240 0.3419

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3