legal-bert-Federal-Regulations

This model is a fine-tuned version of nlpaueb/legal-bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6277
  • Accuracy: 0.7154
  • Precision: 0.7483
  • Recall: 0.7154
  • F1: 0.7248
  • Roc Auc: 0.7853
  • Confusion Matrix: [[2451, 934], [445, 1016]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc Confusion Matrix
0.606 1.0 600 0.6376 0.6605 0.7333 0.6605 0.6745 0.7564 [[2110, 1275], [370, 1091]]
0.5312 2.0 1200 0.5504 0.7418 0.7473 0.7418 0.7442 0.7829 [[2708, 677], [574, 887]]
0.4563 3.0 1800 0.6277 0.7154 0.7483 0.7154 0.7248 0.7853 [[2451, 934], [445, 1016]]

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
114
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Salm00n/legal-bert-Federal-Regulations

Finetuned
(47)
this model