|
--- |
|
language: fr |
|
tags: |
|
- semantic |
|
- sentence-transformers |
|
- sentence-similarity |
|
- fr |
|
datasets: |
|
- sts |
|
--- |
|
# French STS |
|
## STS dev (french) |
|
87.4% |
|
## STS test (french) |
|
85.8% |
|
#### STS pipeline |
|
```python |
|
!pip install -U sentence-transformers |
|
from sentence_transformers import SentenceTransformer |
|
model = SentenceTransformer('..model_path..') |
|
sentences1 = ["J'aime mon téléphone", |
|
"Mon téléphone n'est pas bon.", |
|
"Votre téléphone portable est superbe."] |
|
|
|
sentences2 = ["Est-ce qu'il neige demain?", |
|
"Récemment, de nombreux ouragans ont frappé les États-Unis", |
|
"Le réchauffement climatique est réel",] |
|
embeddings1 = model.encode(sentences1, convert_to_tensor=True) |
|
embeddings2 = model.encode(sentences2, convert_to_tensor=True) |
|
cosine_scores = util.pytorch_cos_sim(embeddings1, embeddings2) |
|
for i in range(len(sentences1)): |
|
for j in range(len(sentences2)): |
|
print(cosine_scores[i][j])) |
|
""" |
|
""" |
|
``` |