metadata
library_name: transformers
language:
- fa
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_20_0
metrics:
- wer
model-index:
- name: whisper-base-fa - Sadegh Karimi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 20.0
type: mozilla-foundation/common_voice_20_0
args: 'config: fa, split: train, test'
metrics:
- name: Wer
type: wer
value: 18.008111901053315
whisper-base-fa - Sadegh Karimi
This model is a fine-tuned version of openai/whisper-base on the Common Voice 20.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1400
- Wer: 18.0081
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 40000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.524 | 0.0493 | 1000 | 0.5244 | 54.4099 |
0.4158 | 0.0986 | 2000 | 0.4063 | 45.3387 |
0.3568 | 0.1479 | 3000 | 0.3515 | 39.9380 |
0.3243 | 0.1972 | 4000 | 0.3176 | 36.2121 |
0.2978 | 0.2465 | 5000 | 0.2894 | 34.1671 |
0.2703 | 0.2958 | 6000 | 0.2691 | 32.6126 |
0.2591 | 0.3451 | 7000 | 0.2522 | 30.4674 |
0.2728 | 0.3944 | 8000 | 0.2388 | 29.0826 |
0.2299 | 0.4437 | 9000 | 0.2297 | 27.9737 |
0.2368 | 0.4930 | 10000 | 0.2186 | 26.9358 |
0.1997 | 0.5423 | 11000 | 0.2116 | 26.3267 |
0.2082 | 0.5916 | 12000 | 0.2052 | 25.6820 |
0.2131 | 0.6409 | 13000 | 0.2000 | 25.1361 |
0.1955 | 0.6902 | 14000 | 0.1966 | 24.4390 |
0.1945 | 0.7395 | 15000 | 0.1949 | 24.3110 |
0.2332 | 0.7888 | 16000 | 0.1985 | 25.1515 |
0.2037 | 0.8381 | 17000 | 0.1915 | 24.7845 |
0.2151 | 0.8874 | 18000 | 0.1869 | 24.0242 |
0.1982 | 0.9367 | 19000 | 0.1822 | 23.0002 |
0.1643 | 0.9860 | 20000 | 0.1776 | 22.7580 |
0.1388 | 1.0353 | 21000 | 0.1745 | 22.5051 |
0.1521 | 1.0846 | 22000 | 0.1715 | 22.1026 |
0.1404 | 1.1339 | 23000 | 0.1694 | 21.8158 |
0.1561 | 1.1832 | 24000 | 0.1680 | 21.8574 |
0.1349 | 1.2325 | 25000 | 0.1671 | 21.8960 |
0.1409 | 1.2818 | 26000 | 0.1728 | 22.0903 |
0.1587 | 1.3311 | 27000 | 0.1707 | 22.5329 |
0.1415 | 1.3804 | 28000 | 0.1658 | 21.4672 |
0.1553 | 1.4297 | 29000 | 0.1616 | 21.4503 |
0.1313 | 1.4790 | 30000 | 0.1589 | 20.6576 |
0.1358 | 1.5283 | 31000 | 0.1559 | 20.1471 |
0.1435 | 1.5776 | 32000 | 0.1521 | 19.7323 |
0.1341 | 1.6269 | 33000 | 0.1501 | 19.6027 |
0.1376 | 1.6762 | 34000 | 0.1481 | 18.8748 |
0.1232 | 1.7255 | 35000 | 0.1462 | 18.8486 |
0.1137 | 1.7748 | 36000 | 0.1441 | 18.6250 |
0.1149 | 1.8241 | 37000 | 0.1425 | 18.4122 |
0.1173 | 1.8734 | 38000 | 0.1415 | 18.2502 |
0.1253 | 1.9227 | 39000 | 0.1404 | 17.9233 |
0.1136 | 1.9720 | 40000 | 0.1400 | 18.0081 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.1.0+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0