File size: 5,209 Bytes
de5d41f
 
 
 
 
fcbde76
de5d41f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beba25e
de5d41f
 
 
 
 
 
 
fcbde76
de5d41f
beba25e
 
de5d41f
 
 
 
 
 
 
 
 
 
 
 
 
86158c2
 
 
 
 
 
de5d41f
 
 
 
 
 
 
 
 
 
 
 
beba25e
de5d41f
 
 
 
 
 
fcbde76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beba25e
 
 
 
 
 
 
 
 
 
de5d41f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
library_name: transformers
language:
- fa
license: apache-2.0
base_model: SadeghK/whisper-base
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_20_0
metrics:
- wer
model-index:
- name: whisper-base-fa - Sadegh Karimi
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 20.0
      type: mozilla-foundation/common_voice_20_0
      args: 'config: fa, split: train, test'
    metrics:
    - name: Wer
      type: wer
      value: 10.37120429344725
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-base-fa - Sadegh Karimi

This model is a fine-tuned version of [SadeghK/whisper-base](https://huggingface.co/SadeghK/whisper-base) on the Common Voice 20.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0813
- Wer: 10.3712

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed


## Use convert-to-ggml.ipynb to convert to ggml
To run faster with whisper.cpp, use convert-to-ggml.ipynb to convert model. 
Model is already converted and saved as "ggml-base-fa.bin"


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 50000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Wer     |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.1234        | 0.0493 | 1000  | 0.1698          | 21.8312 |
| 0.1303        | 0.0986 | 2000  | 0.1663          | 22.9153 |
| 0.1241        | 0.1479 | 3000  | 0.1623          | 20.8843 |
| 0.1223        | 0.1972 | 4000  | 0.1616          | 20.7470 |
| 0.1281        | 0.2465 | 5000  | 0.1522          | 19.3606 |
| 0.1111        | 0.2958 | 6000  | 0.1483          | 20.0901 |
| 0.1097        | 0.3451 | 7000  | 0.1452          | 19.0445 |
| 0.1439        | 0.3944 | 8000  | 0.1367          | 18.0251 |
| 0.1053        | 0.4437 | 9000  | 0.1347          | 17.5902 |
| 0.1248        | 0.4930 | 10000 | 0.1281          | 16.9486 |
| 0.1081        | 0.5423 | 11000 | 0.1252          | 15.9200 |
| 0.1062        | 0.5916 | 12000 | 0.1222          | 15.8167 |
| 0.1139        | 0.6409 | 13000 | 0.1181          | 15.6038 |
| 0.1011        | 0.6902 | 14000 | 0.1145          | 15.0918 |
| 0.098         | 0.7395 | 15000 | 0.1141          | 15.0194 |
| 0.1176        | 0.7888 | 16000 | 0.1091          | 14.1048 |
| 0.0933        | 0.8381 | 17000 | 0.1067          | 13.9028 |
| 0.0981        | 0.8874 | 18000 | 0.1042          | 13.6391 |
| 0.0909        | 0.9367 | 19000 | 0.1012          | 13.2119 |
| 0.0714        | 0.9860 | 20000 | 0.1001          | 13.1826 |
| 0.0491        | 1.0353 | 21000 | 0.0985          | 12.9251 |
| 0.059         | 1.0846 | 22000 | 0.0966          | 12.6799 |
| 0.0492        | 1.1339 | 23000 | 0.0959          | 12.4501 |
| 0.0625        | 1.1832 | 24000 | 0.0943          | 12.5241 |
| 0.0429        | 1.2325 | 25000 | 0.0946          | 12.4424 |
| 0.0403        | 1.2818 | 26000 | 0.0931          | 12.1370 |
| 0.0474        | 1.3311 | 27000 | 0.0921          | 11.7330 |
| 0.0484        | 1.3804 | 28000 | 0.0910          | 11.5710 |
| 0.0585        | 1.4297 | 29000 | 0.0896          | 11.7067 |
| 0.0431        | 1.4790 | 30000 | 0.0890          | 11.3875 |
| 0.045         | 1.5283 | 31000 | 0.0875          | 11.2842 |
| 0.0494        | 1.5776 | 32000 | 0.0862          | 11.5433 |
| 0.0448        | 1.6269 | 33000 | 0.0854          | 11.0282 |
| 0.0508        | 1.6762 | 34000 | 0.0849          | 11.0498 |
| 0.0432        | 1.7255 | 35000 | 0.0837          | 10.7583 |
| 0.0356        | 1.7748 | 36000 | 0.0826          | 10.8339 |
| 0.0353        | 1.8241 | 37000 | 0.0819          | 10.5300 |
| 0.043         | 1.8734 | 38000 | 0.0815          | 10.4838 |
| 0.0434        | 1.9227 | 39000 | 0.0812          | 10.5038 |
| 0.0382        | 1.9720 | 40000 | 0.0809          | 10.4684 |
| 0.0342        | 2.0213 | 41000 | 0.0833          | 10.4853 |
| 0.0249        | 2.0706 | 42000 | 0.0841          | 10.7783 |
| 0.0237        | 2.1199 | 43000 | 0.0835          | 10.5100 |
| 0.0282        | 2.1692 | 44000 | 0.0835          | 10.5563 |
| 0.0277        | 2.2185 | 45000 | 0.0830          | 10.7151 |
| 0.0328        | 2.2678 | 46000 | 0.0824          | 10.3959 |
| 0.0268        | 2.3171 | 47000 | 0.0822          | 10.4560 |
| 0.0395        | 2.3664 | 48000 | 0.0817          | 10.3311 |
| 0.0298        | 2.4157 | 49000 | 0.0815          | 10.4128 |
| 0.029         | 2.4650 | 50000 | 0.0813          | 10.3712 |


### Framework versions

- Transformers 4.48.2
- Pytorch 2.1.0+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0