SadeghK commited on
Commit
fcbde76
·
verified ·
1 Parent(s): abbec9a

End of training

Browse files
Files changed (1) hide show
  1. README.md +45 -45
README.md CHANGED
@@ -3,7 +3,7 @@ library_name: transformers
3
  language:
4
  - fa
5
  license: apache-2.0
6
- base_model: openai/whisper-base
7
  tags:
8
  - generated_from_trainer
9
  datasets:
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Wer
25
  type: wer
26
- value: 18.008111901053315
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,10 +31,10 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  # whisper-base-fa - Sadegh Karimi
33
 
34
- This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 20.0 dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.1400
37
- - Wer: 18.0081
38
 
39
  ## Model description
40
 
@@ -67,46 +67,46 @@ The following hyperparameters were used during training:
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Wer |
69
  |:-------------:|:------:|:-----:|:---------------:|:-------:|
70
- | 0.524 | 0.0493 | 1000 | 0.5244 | 54.4099 |
71
- | 0.4158 | 0.0986 | 2000 | 0.4063 | 45.3387 |
72
- | 0.3568 | 0.1479 | 3000 | 0.3515 | 39.9380 |
73
- | 0.3243 | 0.1972 | 4000 | 0.3176 | 36.2121 |
74
- | 0.2978 | 0.2465 | 5000 | 0.2894 | 34.1671 |
75
- | 0.2703 | 0.2958 | 6000 | 0.2691 | 32.6126 |
76
- | 0.2591 | 0.3451 | 7000 | 0.2522 | 30.4674 |
77
- | 0.2728 | 0.3944 | 8000 | 0.2388 | 29.0826 |
78
- | 0.2299 | 0.4437 | 9000 | 0.2297 | 27.9737 |
79
- | 0.2368 | 0.4930 | 10000 | 0.2186 | 26.9358 |
80
- | 0.1997 | 0.5423 | 11000 | 0.2116 | 26.3267 |
81
- | 0.2082 | 0.5916 | 12000 | 0.2052 | 25.6820 |
82
- | 0.2131 | 0.6409 | 13000 | 0.2000 | 25.1361 |
83
- | 0.1955 | 0.6902 | 14000 | 0.1966 | 24.4390 |
84
- | 0.1945 | 0.7395 | 15000 | 0.1949 | 24.3110 |
85
- | 0.2332 | 0.7888 | 16000 | 0.1985 | 25.1515 |
86
- | 0.2037 | 0.8381 | 17000 | 0.1915 | 24.7845 |
87
- | 0.2151 | 0.8874 | 18000 | 0.1869 | 24.0242 |
88
- | 0.1982 | 0.9367 | 19000 | 0.1822 | 23.0002 |
89
- | 0.1643 | 0.9860 | 20000 | 0.1776 | 22.7580 |
90
- | 0.1388 | 1.0353 | 21000 | 0.1745 | 22.5051 |
91
- | 0.1521 | 1.0846 | 22000 | 0.1715 | 22.1026 |
92
- | 0.1404 | 1.1339 | 23000 | 0.1694 | 21.8158 |
93
- | 0.1561 | 1.1832 | 24000 | 0.1680 | 21.8574 |
94
- | 0.1349 | 1.2325 | 25000 | 0.1671 | 21.8960 |
95
- | 0.1409 | 1.2818 | 26000 | 0.1728 | 22.0903 |
96
- | 0.1587 | 1.3311 | 27000 | 0.1707 | 22.5329 |
97
- | 0.1415 | 1.3804 | 28000 | 0.1658 | 21.4672 |
98
- | 0.1553 | 1.4297 | 29000 | 0.1616 | 21.4503 |
99
- | 0.1313 | 1.4790 | 30000 | 0.1589 | 20.6576 |
100
- | 0.1358 | 1.5283 | 31000 | 0.1559 | 20.1471 |
101
- | 0.1435 | 1.5776 | 32000 | 0.1521 | 19.7323 |
102
- | 0.1341 | 1.6269 | 33000 | 0.1501 | 19.6027 |
103
- | 0.1376 | 1.6762 | 34000 | 0.1481 | 18.8748 |
104
- | 0.1232 | 1.7255 | 35000 | 0.1462 | 18.8486 |
105
- | 0.1137 | 1.7748 | 36000 | 0.1441 | 18.6250 |
106
- | 0.1149 | 1.8241 | 37000 | 0.1425 | 18.4122 |
107
- | 0.1173 | 1.8734 | 38000 | 0.1415 | 18.2502 |
108
- | 0.1253 | 1.9227 | 39000 | 0.1404 | 17.9233 |
109
- | 0.1136 | 1.9720 | 40000 | 0.1400 | 18.0081 |
110
 
111
 
112
  ### Framework versions
 
3
  language:
4
  - fa
5
  license: apache-2.0
6
+ base_model: SadeghK/whisper-base
7
  tags:
8
  - generated_from_trainer
9
  datasets:
 
23
  metrics:
24
  - name: Wer
25
  type: wer
26
+ value: 10.468362043705566
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  # whisper-base-fa - Sadegh Karimi
33
 
34
+ This model is a fine-tuned version of [SadeghK/whisper-base](https://huggingface.co/SadeghK/whisper-base) on the Common Voice 20.0 dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.0809
37
+ - Wer: 10.4684
38
 
39
  ## Model description
40
 
 
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Wer |
69
  |:-------------:|:------:|:-----:|:---------------:|:-------:|
70
+ | 0.1234 | 0.0493 | 1000 | 0.1698 | 21.8312 |
71
+ | 0.1303 | 0.0986 | 2000 | 0.1663 | 22.9153 |
72
+ | 0.1241 | 0.1479 | 3000 | 0.1623 | 20.8843 |
73
+ | 0.1223 | 0.1972 | 4000 | 0.1616 | 20.7470 |
74
+ | 0.1281 | 0.2465 | 5000 | 0.1522 | 19.3606 |
75
+ | 0.1111 | 0.2958 | 6000 | 0.1483 | 20.0901 |
76
+ | 0.1097 | 0.3451 | 7000 | 0.1452 | 19.0445 |
77
+ | 0.1439 | 0.3944 | 8000 | 0.1367 | 18.0251 |
78
+ | 0.1053 | 0.4437 | 9000 | 0.1347 | 17.5902 |
79
+ | 0.1248 | 0.4930 | 10000 | 0.1281 | 16.9486 |
80
+ | 0.1081 | 0.5423 | 11000 | 0.1252 | 15.9200 |
81
+ | 0.1062 | 0.5916 | 12000 | 0.1222 | 15.8167 |
82
+ | 0.1139 | 0.6409 | 13000 | 0.1181 | 15.6038 |
83
+ | 0.1011 | 0.6902 | 14000 | 0.1145 | 15.0918 |
84
+ | 0.098 | 0.7395 | 15000 | 0.1141 | 15.0194 |
85
+ | 0.1176 | 0.7888 | 16000 | 0.1091 | 14.1048 |
86
+ | 0.0933 | 0.8381 | 17000 | 0.1067 | 13.9028 |
87
+ | 0.0981 | 0.8874 | 18000 | 0.1042 | 13.6391 |
88
+ | 0.0909 | 0.9367 | 19000 | 0.1012 | 13.2119 |
89
+ | 0.0714 | 0.9860 | 20000 | 0.1001 | 13.1826 |
90
+ | 0.0491 | 1.0353 | 21000 | 0.0985 | 12.9251 |
91
+ | 0.059 | 1.0846 | 22000 | 0.0966 | 12.6799 |
92
+ | 0.0492 | 1.1339 | 23000 | 0.0959 | 12.4501 |
93
+ | 0.0625 | 1.1832 | 24000 | 0.0943 | 12.5241 |
94
+ | 0.0429 | 1.2325 | 25000 | 0.0946 | 12.4424 |
95
+ | 0.0403 | 1.2818 | 26000 | 0.0931 | 12.1370 |
96
+ | 0.0474 | 1.3311 | 27000 | 0.0921 | 11.7330 |
97
+ | 0.0484 | 1.3804 | 28000 | 0.0910 | 11.5710 |
98
+ | 0.0585 | 1.4297 | 29000 | 0.0896 | 11.7067 |
99
+ | 0.0431 | 1.4790 | 30000 | 0.0890 | 11.3875 |
100
+ | 0.045 | 1.5283 | 31000 | 0.0875 | 11.2842 |
101
+ | 0.0494 | 1.5776 | 32000 | 0.0862 | 11.5433 |
102
+ | 0.0448 | 1.6269 | 33000 | 0.0854 | 11.0282 |
103
+ | 0.0508 | 1.6762 | 34000 | 0.0849 | 11.0498 |
104
+ | 0.0432 | 1.7255 | 35000 | 0.0837 | 10.7583 |
105
+ | 0.0356 | 1.7748 | 36000 | 0.0826 | 10.8339 |
106
+ | 0.0353 | 1.8241 | 37000 | 0.0819 | 10.5300 |
107
+ | 0.043 | 1.8734 | 38000 | 0.0815 | 10.4838 |
108
+ | 0.0434 | 1.9227 | 39000 | 0.0812 | 10.5038 |
109
+ | 0.0382 | 1.9720 | 40000 | 0.0809 | 10.4684 |
110
 
111
 
112
  ### Framework versions