SMG0's picture
T2-usingF1_BL
e8fb443 verified
---
library_name: transformers
base_model: aubmindlab/bert-base-arabertv02-twitter
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Model4_withclasess-arabertv2_base_T2_WS_A100v2_F1__BL
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/so/Model4-with-add-clasess-T1-ArabertTv2-Bas-WS-A100-BL/runs/o8owefo8)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/so/Model4-with-add-clasess-T1-ArabertTv2-Bas-WS-A100-BL/runs/o8owefo8)
# Model4_withclasess-arabertv2_base_T2_WS_A100v2_F1__BL
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0770
- F1-micro: 0.8282
- Roc Auc: 0.9072
- Accuracy: 0.7912
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1-micro | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:|:--------:|
| 0.1028 | 1.0 | 507 | 0.0644 | 0.7904 | 0.8639 | 0.7297 |
| 0.0476 | 2.0 | 1014 | 0.0556 | 0.8143 | 0.8828 | 0.7668 |
| 0.0308 | 3.0 | 1521 | 0.0570 | 0.8200 | 0.8929 | 0.7758 |
| 0.0206 | 4.0 | 2028 | 0.0624 | 0.8179 | 0.8979 | 0.7828 |
| 0.0134 | 5.0 | 2535 | 0.0696 | 0.8183 | 0.9016 | 0.7856 |
| 0.0097 | 6.0 | 3042 | 0.0743 | 0.8226 | 0.9052 | 0.7898 |
| 0.0077 | 7.0 | 3549 | 0.0779 | 0.8166 | 0.9039 | 0.7793 |
| 0.0054 | 8.0 | 4056 | 0.0809 | 0.8249 | 0.9063 | 0.7905 |
| 0.0045 | 9.0 | 4563 | 0.0770 | 0.8282 | 0.9072 | 0.7912 |
| 0.0036 | 10.0 | 5070 | 0.0812 | 0.8228 | 0.9049 | 0.7849 |
| 0.003 | 11.0 | 5577 | 0.0874 | 0.8250 | 0.9072 | 0.7919 |
| 0.0025 | 12.0 | 6084 | 0.0886 | 0.8258 | 0.9067 | 0.7863 |
### Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu124
- Tokenizers 0.21.0