SOLAR-10.7B-slerp
SOLAR-10.7B-slerp is a merge of the following models using mergekit:
Github
https://github.com/sunjin7725/SOLAR-10.7b-slerp
Benchmark
Open-Ko-LLM-Leaderboard
Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|
56.93 | 53.58 | 62.03 | 53.31 | 57.16 | 58.56 |
How to use
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
repo = 'SJ-Donald/SOLAR-10.7B-slerp'
tokenizer = AutoTokenizer.from_pretrained(repo)
model = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
🧩 Configuration
slices:
- sources:
- model: LDCC/LDCC-SOLAR-10.7B
layer_range: [0, 48]
- model: upstage/SOLAR-10.7B-Instruct-v1.0
layer_range: [0, 48]
merge_method: slerp
base_model: upstage/SOLAR-10.7B-Instruct-v1.0
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
tokenizer_source: union
dtype: float16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.58 |
AI2 Reasoning Challenge (25-Shot) | 68.17 |
HellaSwag (10-Shot) | 86.91 |
MMLU (5-Shot) | 66.73 |
TruthfulQA (0-shot) | 67.42 |
Winogrande (5-shot) | 84.06 |
GSM8k (5-shot) | 62.17 |
- Downloads last month
- 2,264
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for SJ-Donald/SOLAR-10.7B-slerp
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard68.170
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard86.910
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard66.730
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard67.420
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard84.060
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard62.170