SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-l
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Rsr2425/legal-ft-2")
# Run inference
sentences = [
    '1. What technique is being used by labs to create training data for smaller models?\n2. How many synthetically generated examples were used in Meta’s Llama 3.3 70B fine-tuning?',
    'Another common technique is to use larger models to help create training data for their smaller, cheaper alternatives—a trick used by an increasing number of labs. DeepSeek v3 used “reasoning” data created by DeepSeek-R1. Meta’s Llama 3.3 70B fine-tuning used over 25M synthetically generated examples.\nCareful design of the training data that goes into an LLM appears to be the entire game for creating these models. The days of just grabbing a full scrape of the web and indiscriminately dumping it into a training run are long gone.\nLLMs somehow got even harder to use',
    '7th: Prompts.js\n\n9th: I can now run a GPT-4 class model on my laptop\n\n10th: ChatGPT Canvas can make API requests now, but it’s complicated\n\n11th: Gemini 2.0 Flash: An outstanding multi-modal LLM with a sci-fi streaming mode\n\n19th: Building Python tools with a one-shot prompt using uv run and Claude Projects\n\n19th: Gemini 2.0 Flash “Thinking mode”\n\n20th: December in LLMs has been a lot\n\n20th: Live blog: the 12th day of OpenAI—“Early evals for OpenAI o3”\n\n24th: Trying out QvQ—Qwen’s new visual reasoning model\n\n31st: Things we learned about LLMs in 2024\n\n\n\n\n(This list generated using Django SQL Dashboard with a SQL query written for me by Claude.)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8333
cosine_accuracy@3 1.0
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.8333
cosine_precision@3 0.3333
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.8333
cosine_recall@3 1.0
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.9385
cosine_mrr@10 0.9167
cosine_map@100 0.9167

Training Details

Training Dataset

Unnamed Dataset

  • Size: 78 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 78 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 30 tokens
    • mean: 42.76 tokens
    • max: 59 tokens
    • min: 43 tokens
    • mean: 130.5 tokens
    • max: 204 tokens
  • Samples:
    sentence_0 sentence_1
    1. What key themes and pivotal moments in the field of Large Language Models were identified in 2024?
    2. How does the review of 2024 compare to the review of 2023 regarding advancements in LLMs?
    Things we learned about LLMs in 2024





















    Simon Willison’s Weblog
    Subscribe






    Things we learned about LLMs in 2024
    31st December 2024
    A lot has happened in the world of Large Language Models over the course of 2024. Here’s a review of things we figured out about the field in the past twelve months, plus my attempt at identifying key themes and pivotal moments.
    This is a sequel to my review of 2023.
    In this article:
    1. What advancements in multimodal capabilities have been observed in LLMs, particularly regarding audio and video?
    2. How has the competition among LLMs affected their pricing and accessibility over time?
    The GPT-4 barrier was comprehensively broken
    Some of those GPT-4 models run on my laptop
    LLM prices crashed, thanks to competition and increased efficiency
    Multimodal vision is common, audio and video are starting to emerge
    Voice and live camera mode are science fiction come to life
    Prompt driven app generation is a commodity already
    Universal access to the best models lasted for just a few short months
    “Agents” still haven’t really happened yet
    Evals really matter
    Apple Intelligence is bad, Apple’s MLX library is excellent
    The rise of inference-scaling “reasoning” models
    Was the best currently available LLM trained in China for less than $6m?
    The environmental impact got better
    The environmental impact got much, much worse
    1. What challenges are associated with using LLMs in 2024?
    2. How is knowledge distribution described in the context of LLMs?
    The year of slop
    Synthetic training data works great
    LLMs somehow got even harder to use
    Knowledge is incredibly unevenly distributed
    LLMs need better criticism
    Everything tagged “llms” on my blog in 2024
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 10
  • per_device_eval_batch_size: 10
  • num_train_epochs: 10
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 10
  • per_device_eval_batch_size: 10
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step cosine_ndcg@10
1.0 8 1.0
2.0 16 0.9583
3.0 24 0.9276
4.0 32 0.9385
5.0 40 0.9385
6.0 48 0.9385
6.25 50 0.9385
7.0 56 0.9385
8.0 64 0.9385
9.0 72 0.9385
10.0 80 0.9385

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.3.1
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
1
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Rsr2425/legal-ft-2

Finetuned
(56)
this model

Evaluation results