|
Quantization made by Richard Erkhov. |
|
|
|
[Github](https://github.com/RichardErkhov) |
|
|
|
[Discord](https://discord.gg/pvy7H8DZMG) |
|
|
|
[Request more models](https://github.com/RichardErkhov/quant_request) |
|
|
|
|
|
LLaMA3-SFT - GGUF |
|
- Model creator: https://huggingface.co/RLHFlow/ |
|
- Original model: https://huggingface.co/RLHFlow/LLaMA3-SFT/ |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [LLaMA3-SFT.Q2_K.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q2_K.gguf) | Q2_K | 2.96GB | |
|
| [LLaMA3-SFT.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.IQ3_XS.gguf) | IQ3_XS | 3.28GB | |
|
| [LLaMA3-SFT.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.IQ3_S.gguf) | IQ3_S | 3.43GB | |
|
| [LLaMA3-SFT.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q3_K_S.gguf) | Q3_K_S | 3.41GB | |
|
| [LLaMA3-SFT.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.IQ3_M.gguf) | IQ3_M | 3.52GB | |
|
| [LLaMA3-SFT.Q3_K.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q3_K.gguf) | Q3_K | 3.74GB | |
|
| [LLaMA3-SFT.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q3_K_M.gguf) | Q3_K_M | 3.74GB | |
|
| [LLaMA3-SFT.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q3_K_L.gguf) | Q3_K_L | 4.03GB | |
|
| [LLaMA3-SFT.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.IQ4_XS.gguf) | IQ4_XS | 4.18GB | |
|
| [LLaMA3-SFT.Q4_0.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q4_0.gguf) | Q4_0 | 4.34GB | |
|
| [LLaMA3-SFT.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.IQ4_NL.gguf) | IQ4_NL | 4.38GB | |
|
| [LLaMA3-SFT.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q4_K_S.gguf) | Q4_K_S | 4.37GB | |
|
| [LLaMA3-SFT.Q4_K.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q4_K.gguf) | Q4_K | 4.58GB | |
|
| [LLaMA3-SFT.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q4_K_M.gguf) | Q4_K_M | 4.58GB | |
|
| [LLaMA3-SFT.Q4_1.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q4_1.gguf) | Q4_1 | 4.78GB | |
|
| [LLaMA3-SFT.Q5_0.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q5_0.gguf) | Q5_0 | 5.21GB | |
|
| [LLaMA3-SFT.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q5_K_S.gguf) | Q5_K_S | 5.21GB | |
|
| [LLaMA3-SFT.Q5_K.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q5_K.gguf) | Q5_K | 5.34GB | |
|
| [LLaMA3-SFT.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q5_K_M.gguf) | Q5_K_M | 5.34GB | |
|
| [LLaMA3-SFT.Q5_1.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q5_1.gguf) | Q5_1 | 5.65GB | |
|
| [LLaMA3-SFT.Q6_K.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q6_K.gguf) | Q6_K | 6.14GB | |
|
| [LLaMA3-SFT.Q8_0.gguf](https://huggingface.co/RichardErkhov/RLHFlow_-_LLaMA3-SFT-gguf/blob/main/LLaMA3-SFT.Q8_0.gguf) | Q8_0 | 7.95GB | |
|
|
|
|
|
|
|
|
|
Original model description: |
|
--- |
|
library_name: transformers |
|
tags: [] |
|
--- |
|
|
|
This is the SFT checkpoint used for the project [Online-RLHF](https://github.com/RLHFlow/Online-RLHF). Also check our [technical report here](https://arxiv.org/pdf/2405.07863). |
|
|
|
The model is trained from [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on a mixture of diverse open-source high-quality data for 1 epoch with detailed parameters in the report. It has not been trained by RLHF and can serve as a good starting point for the RLHF research. |
|
|
|
|
|
|
|
|