GGUF
English
sound language model
Inference Endpoints
conversational
aashish1904's picture
Upload README.md with huggingface_hub
8fa45bd verified
---
datasets:
- homebrewltd/instruction-speech-whispervq-v2
language:
- en
license: apache-2.0
tags:
- sound language model
---
![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)
# QuantFactory/llama3.1-s-base-v0.2-GGUF
This is quantized version of [homebrewltd/llama3.1-s-base-v0.2](https://huggingface.co/homebrewltd/llama3.1-s-base-v0.2) created using llama.cpp
# Original Model Card
## Model Details
We have developed and released the family [llama3s](https://huggingface.co/collections/homebrew-research/llama3-s-669df2139f0576abc6eb7405). This family is natively understanding audio and text input.
We continual pretrain on the expanded vocabulary [homebrewltd/llama3.1-s-whispervq-init](https://huggingface.co/homebrewltd/llama3.1-s-whispervq-init) with 900M tokens from [homebrewltd/raw-speech-whispervq-v1](https://huggingface.co/datasets/homebrewltd/raw-speech-whispervq-v1) dataset.
**Model developers** Homebrew Research.
**Input** Text and sound.
**Output** Text.
**Model Architecture** Llama-3.
**Language(s):** English.
## Intended Use
**Intended Use Cases** This family is primarily intended for research applications. This version aims to further improve the LLM on sound understanding capabilities.
**Out-of-scope** The use of llama3-s in any manner that violates applicable laws or regulations is strictly prohibited.
## Training process
**Training Metrics Image**: Below is a snapshot of the training loss curve visualized.
![train_log](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/iAbaP7SCoyZ8tz2hyK8k0.png)
### Hardware
**GPU Configuration**: Cluster of 10x NVIDIA A6000-48GB.
**GPU Usage**:
- **Continual Training**: 30 hours.
### Training Arguments
We utilize [torchtune](https://github.com/pytorch/torchtune) library for the latest FSDP2 training code implementation.
| Parameter | Continual Training |
|----------------------------|-------------------------|
| **Epoch** | 1 |
| **Global batch size** | 480 |
| **Learning Rate** | 2e-4 |
| **Learning Scheduler** | Cosine with warmup |
| **Optimizer** | AdamW fused |
| **Warmup Steps** | 50 |
| **Weight Decay** | 0.01 |
| **Max Sequence Length** | 512 |
## Citation Information
**BibTeX:**
```
@article{Llama3-S: Sound Instruction Language Model 2024,
title={Llama3-S},
author={Homebrew Research},
year=2024,
month=August},
url={https://huggingface.co/homebrewltd/llama3.1-s-2024-08-15}
```
## Acknowledgement
- **[WhisperSpeech](https://github.com/collabora/WhisperSpeech)**
- **[Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)**