SentenceTransformer based on unsloth/Qwen2.5-0.5B-Instruct

This is a sentence-transformers model finetuned from unsloth/Qwen2.5-0.5B-Instruct. It maps sentences & paragraphs to a 896-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: unsloth/Qwen2.5-0.5B-Instruct
  • Maximum Sequence Length: 32768 tokens
  • Output Dimensionality: 896 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 32768, 'do_lower_case': False}) with Transformer model: Qwen2Model 
  (1): Pooling({'word_embedding_dimension': 896, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("PeYing/model")
# Run inference
sentences = [
    'Can employees wear traditional attire?',
    '1. 1. Yes, acceptable traditional attire includes: \n2. 1. Malaysian Traditional Attire. \n3. 2.Malay Baju Kurung. \n4. 3. Baju Melayu for Muslim men. \n5. 4.Indian Saree. \n6. 5. Punjabi Suit. \n7. Chinese Cheongsam are acceptable.',
    '1. N03 : Monday to Friday, 8am to 5:30pm.\n2. N04 : Tuesday to Saturday, 8am to 5:30pm.\n3. N05 : Monday to Friday, 8:30am to 6pm.\n4. N06 : Monday to Friday, 9am to 6:30pm.\n5. N07 : Tuesday to Saturday, 8:30am to 6pm.\n6. N08 : Tuesday to Saturday, 9am to 6.30pm.\n7. N6 : Tuesday to Saturday, 8:30pm to 6:15pm.\n8. N9: 5 working days 2 days off, 7:30am to 5:15pm , 10:30am to 8:15pm.\n9. N10: 5 working days 2 days off, 10:30am to 8:15pm , 7:30am to 5:15pm.\n10. AA/BB/CC/A/B/C : 4 working days 2 days off, 6:30am to 6:30pm , 6:30pm to 6:30am.\n11. AA1/BB1/CC1/A1/B1/C1 : 4 working days 2 days off, 6:30am to 6:30pm , 6:30pm to 6:30am.\n12. GG/HH/II/GG1/HH1/II1 : 4 working days 2 days off, 7:30am to 7:30pm , 7:30pm to 7:30am.\n13. P1 : Monday to Thursday (4 working days 2 days off), 6:30am to 6:30pm , 6:30pm to 6:30am.\n14. P2 : Tuesday to Friday (4 working days 2 days off), 6:30am to 6:30pm , 6:30pm to 6:30am. \n15. U1/U2/U3/UU1/UU2/UU3 : 4 working days 2 days off, 7:30am to 7.30pm. \n16. V1/V2/V3/VV1/VV2/VV3 : 4 working days 2 days off, 8.30am to 8.30pm. \n17. W1/W2/W3/WW1/WW2/WW3 : 4 working days 2 days off, 6.30am to 6.30pm. \n18. H1 : Monday to Thursday (4 working days 2 days off), 6.30am to 6.30pm. \n19. H2 : Tuesday to Friday (4 working days 2 days off), 6.30am to 6.30pm. \n20. H3 : Wednesday to Saturday (4 working days 2 days off), 6.30am to 6.30pm. \n21. H6(applicable in S only) : Monday to Thursday (4 working days 2 days off), 7.30am to 7.30pm. \n22. H6(applicable in M only) : Monday to Thursday (4 working days 2 days off), 7.30am to 7.30pm.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 896]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 182 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 182 samples:
    sentence_0 sentence_1 label
    type string string int
    details
    • min: 5 tokens
    • mean: 12.15 tokens
    • max: 28 tokens
    • min: 3 tokens
    • mean: 63.21 tokens
    • max: 793 tokens
    • 1: 100.00%
  • Samples:
    sentence_0 sentence_1 label
    List out all the work schedule for Carsem. 1. N03 : Monday to Friday, 8am to 5:30pm.
    2. N04 : Tuesday to Saturday, 8am to 5:30pm.
    3. N05 : Monday to Friday, 8:30am to 6pm.
    4. N06 : Monday to Friday, 9am to 6:30pm.
    5. N07 : Tuesday to Saturday, 8:30am to 6pm.
    6. N08 : Tuesday to Saturday, 9am to 6.30pm.
    7. N6 : Tuesday to Saturday, 8:30pm to 6:15pm.
    8. N9: 5 working days 2 days off, 7:30am to 5:15pm , 10:30am to 8:15pm.
    9. N10: 5 working days 2 days off, 10:30am to 8:15pm , 7:30am to 5:15pm.
    10. AA/BB/CC/A/B/C : 4 working days 2 days off, 6:30am to 6:30pm , 6:30pm to 6:30am.
    11. AA1/BB1/CC1/A1/B1/C1 : 4 working days 2 days off, 6:30am to 6:30pm , 6:30pm to 6:30am.
    12. GG/HH/II/GG1/HH1/II1 : 4 working days 2 days off, 7:30am to 7:30pm , 7:30pm to 7:30am.
    13. P1 : Monday to Thursday (4 working days 2 days off), 6:30am to 6:30pm , 6:30pm to 6:30am.
    14. P2 : Tuesday to Friday (4 working days 2 days off), 6:30am to 6:30pm , 6:30pm to 6:30am.
    15. U1/U2/U3/UU1/UU2/UU3 : 4 working days 2 days off, 7:30am to 7.30pm.
    16. V1/V2/V3/VV1/VV...
    1
    What is the maximum allowed working hours in a week? 1. Employees are not allowed to work more than 60 hours in a week inclusive of overtime and 1 rest day per week. Company will monitor overtime and rest day utilization and take appropriate action to address instances deemed excessive. 1
    Why the company is not allowed working hours in a week more than 60 hours? 1. Continuous overtime causes worker strain that may lead to reduced productivity, increased turnover and increased injury and illnesses. 1
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 1
  • per_device_eval_batch_size: 1
  • num_train_epochs: 1
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 1
  • per_device_eval_batch_size: 1
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Framework Versions

  • Python: 3.10.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.1
  • PyTorch: 2.5.1+cu118
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
4
Safetensors
Model size
494M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for PeYing/model

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(7)
this model