metadata
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-8front-1body-8rear
results: []
t5-base-TEDxJP-8front-1body-8rear
This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:
- Loss: 0.4357
- Wer: 0.1706
- Mer: 0.1649
- Wil: 0.2512
- Wip: 0.7488
- Hits: 55798
- Substitutions: 6352
- Deletions: 2437
- Insertions: 2230
- Cer: 0.1344
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 30
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.585 | 1.0 | 1457 | 0.4589 | 0.2109 | 0.1988 | 0.2866 | 0.7134 | 54910 | 6576 | 3101 | 3947 | 0.1850 |
0.5098 | 2.0 | 2914 | 0.4190 | 0.1814 | 0.1744 | 0.2618 | 0.7382 | 55486 | 6473 | 2628 | 2617 | 0.1435 |
0.4648 | 3.0 | 4371 | 0.4108 | 0.1728 | 0.1669 | 0.2526 | 0.7474 | 55696 | 6298 | 2593 | 2267 | 0.1366 |
0.4075 | 4.0 | 5828 | 0.4071 | 0.1728 | 0.1670 | 0.2534 | 0.7466 | 55649 | 6356 | 2582 | 2220 | 0.1364 |
0.3904 | 5.0 | 7285 | 0.4118 | 0.1709 | 0.1652 | 0.2514 | 0.7486 | 55753 | 6334 | 2500 | 2203 | 0.1343 |
0.343 | 6.0 | 8742 | 0.4131 | 0.1701 | 0.1647 | 0.2509 | 0.7491 | 55741 | 6334 | 2512 | 2142 | 0.1338 |
0.2981 | 7.0 | 10199 | 0.4211 | 0.1701 | 0.1645 | 0.2503 | 0.7497 | 55788 | 6302 | 2497 | 2187 | 0.1345 |
0.2663 | 8.0 | 11656 | 0.4291 | 0.1698 | 0.1642 | 0.2503 | 0.7497 | 55851 | 6338 | 2398 | 2234 | 0.1339 |
0.2938 | 9.0 | 13113 | 0.4317 | 0.1699 | 0.1642 | 0.2503 | 0.7497 | 55833 | 6329 | 2425 | 2218 | 0.1340 |
0.2692 | 10.0 | 14570 | 0.4357 | 0.1706 | 0.1649 | 0.2512 | 0.7488 | 55798 | 6352 | 2437 | 2230 | 0.1344 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1