Padomin's picture
update model card README.md
5eb2ccd
|
raw
history blame
3.1 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-8front-1body-8rear
    results: []

t5-base-TEDxJP-8front-1body-8rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4357
  • Wer: 0.1706
  • Mer: 0.1649
  • Wil: 0.2512
  • Wip: 0.7488
  • Hits: 55798
  • Substitutions: 6352
  • Deletions: 2437
  • Insertions: 2230
  • Cer: 0.1344

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 30
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.585 1.0 1457 0.4589 0.2109 0.1988 0.2866 0.7134 54910 6576 3101 3947 0.1850
0.5098 2.0 2914 0.4190 0.1814 0.1744 0.2618 0.7382 55486 6473 2628 2617 0.1435
0.4648 3.0 4371 0.4108 0.1728 0.1669 0.2526 0.7474 55696 6298 2593 2267 0.1366
0.4075 4.0 5828 0.4071 0.1728 0.1670 0.2534 0.7466 55649 6356 2582 2220 0.1364
0.3904 5.0 7285 0.4118 0.1709 0.1652 0.2514 0.7486 55753 6334 2500 2203 0.1343
0.343 6.0 8742 0.4131 0.1701 0.1647 0.2509 0.7491 55741 6334 2512 2142 0.1338
0.2981 7.0 10199 0.4211 0.1701 0.1645 0.2503 0.7497 55788 6302 2497 2187 0.1345
0.2663 8.0 11656 0.4291 0.1698 0.1642 0.2503 0.7497 55851 6338 2398 2234 0.1339
0.2938 9.0 13113 0.4317 0.1699 0.1642 0.2503 0.7497 55833 6329 2425 2218 0.1340
0.2692 10.0 14570 0.4357 0.1706 0.1649 0.2512 0.7488 55798 6352 2437 2230 0.1344

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1