File size: 3,104 Bytes
95f966c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a29c4d
 
 
 
 
 
 
 
 
 
95f966c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a29c4d
95f966c
 
 
 
 
 
 
 
 
5a29c4d
 
 
 
 
 
 
 
 
 
95f966c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-8front-1body-8rear
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-base-TEDxJP-8front-1body-8rear

This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4383
- Wer: 0.1703
- Mer: 0.1643
- Wil: 0.2498
- Wip: 0.7502
- Hits: 55917
- Substitutions: 6285
- Deletions: 2385
- Insertions: 2327
- Cer: 0.1338

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Mer    | Wil    | Wip    | Hits  | Substitutions | Deletions | Insertions | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:|
| 0.5634        | 1.0   | 1457  | 0.4668          | 0.2271 | 0.2101 | 0.2986 | 0.7014 | 55139 | 6756          | 2692      | 5219       | 0.1993 |
| 0.5335        | 2.0   | 2914  | 0.4168          | 0.1852 | 0.1776 | 0.2649 | 0.7351 | 55407 | 6467          | 2713      | 2782       | 0.1495 |
| 0.4453        | 3.0   | 4371  | 0.4124          | 0.1738 | 0.1678 | 0.2545 | 0.7455 | 55683 | 6391          | 2513      | 2321       | 0.1344 |
| 0.388         | 4.0   | 5828  | 0.4082          | 0.1703 | 0.1646 | 0.2502 | 0.7498 | 55838 | 6297          | 2452      | 2249       | 0.1324 |
| 0.3448        | 5.0   | 7285  | 0.4156          | 0.1704 | 0.1646 | 0.2505 | 0.7495 | 55840 | 6320          | 2427      | 2257       | 0.1339 |
| 0.3103        | 6.0   | 8742  | 0.4177          | 0.1690 | 0.1632 | 0.2484 | 0.7516 | 55955 | 6263          | 2369      | 2280       | 0.1324 |
| 0.3369        | 7.0   | 10199 | 0.4225          | 0.1688 | 0.1631 | 0.2480 | 0.7520 | 55930 | 6230          | 2427      | 2244       | 0.1327 |
| 0.3127        | 8.0   | 11656 | 0.4294          | 0.1692 | 0.1636 | 0.2489 | 0.7511 | 55876 | 6265          | 2446      | 2220       | 0.1331 |
| 0.2739        | 9.0   | 13113 | 0.4329          | 0.1702 | 0.1643 | 0.2501 | 0.7499 | 55903 | 6316          | 2368      | 2307       | 0.1338 |
| 0.269         | 10.0  | 14570 | 0.4383          | 0.1703 | 0.1643 | 0.2498 | 0.7502 | 55917 | 6285          | 2385      | 2327       | 0.1338 |


### Framework versions

- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1