update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- te_dx_jp
|
7 |
+
model-index:
|
8 |
+
- name: t5-base-TEDxJP-8front-1body-8rear
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# t5-base-TEDxJP-8front-1body-8rear
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.4359
|
20 |
+
- Wer: 0.1693
|
21 |
+
- Mer: 0.1635
|
22 |
+
- Wil: 0.2485
|
23 |
+
- Wip: 0.7515
|
24 |
+
- Hits: 55936
|
25 |
+
- Substitutions: 6242
|
26 |
+
- Deletions: 2409
|
27 |
+
- Insertions: 2283
|
28 |
+
- Cer: 0.1334
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.0001
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_ratio: 0.1
|
54 |
+
- num_epochs: 10
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
|
59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:|
|
60 |
+
| 0.5891 | 1.0 | 1457 | 0.4696 | 0.2065 | 0.1954 | 0.2843 | 0.7157 | 54931 | 6665 | 2991 | 3684 | 0.1713 |
|
61 |
+
| 0.4787 | 2.0 | 2914 | 0.4172 | 0.1767 | 0.1707 | 0.2566 | 0.7434 | 55432 | 6311 | 2844 | 2256 | 0.1417 |
|
62 |
+
| 0.4425 | 3.0 | 4371 | 0.4078 | 0.1727 | 0.1667 | 0.2528 | 0.7472 | 55754 | 6342 | 2491 | 2320 | 0.1362 |
|
63 |
+
| 0.3887 | 4.0 | 5828 | 0.4101 | 0.1718 | 0.1657 | 0.2521 | 0.7479 | 55850 | 6367 | 2370 | 2356 | 0.1346 |
|
64 |
+
| 0.3567 | 5.0 | 7285 | 0.4120 | 0.1708 | 0.1648 | 0.2505 | 0.7495 | 55926 | 6315 | 2346 | 2371 | 0.1333 |
|
65 |
+
| 0.3157 | 6.0 | 8742 | 0.4174 | 0.1710 | 0.1652 | 0.2510 | 0.7490 | 55805 | 6313 | 2469 | 2260 | 0.1346 |
|
66 |
+
| 0.2958 | 7.0 | 10199 | 0.4277 | 0.1700 | 0.1641 | 0.2493 | 0.7507 | 55934 | 6263 | 2390 | 2330 | 0.1339 |
|
67 |
+
| 0.3088 | 8.0 | 11656 | 0.4268 | 0.1687 | 0.1631 | 0.2483 | 0.7517 | 55890 | 6252 | 2445 | 2198 | 0.1329 |
|
68 |
+
| 0.2725 | 9.0 | 13113 | 0.4352 | 0.1697 | 0.1639 | 0.2490 | 0.7510 | 55911 | 6247 | 2429 | 2287 | 0.1329 |
|
69 |
+
| 0.2588 | 10.0 | 14570 | 0.4359 | 0.1693 | 0.1635 | 0.2485 | 0.7515 | 55936 | 6242 | 2409 | 2283 | 0.1334 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.21.2
|
75 |
+
- Pytorch 1.12.1+cu116
|
76 |
+
- Datasets 2.4.0
|
77 |
+
- Tokenizers 0.12.1
|