glue_sst_classifier_2

This model is a fine-tuned version of bert-base-cased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2359
  • F1: 0.9034
  • Accuracy: 0.9014

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy
0.3653 0.19 100 0.3213 0.8717 0.8727
0.291 0.38 200 0.2662 0.8936 0.8911
0.2239 0.57 300 0.2417 0.9081 0.9060
0.2306 0.76 400 0.2359 0.9105 0.9094
0.2185 0.95 500 0.2371 0.9011 0.8991

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train MonaA/glue_sst_classifier_2

Evaluation results