gte-micro-v3
This is a distill of gte-tiny.
Intended purpose
This model is designed for use in semantic-autocomplete (click here for demo).
Usage (Sentence-Transformers) (same as gte-tiny)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('Mihaiii/gte-micro-v3')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers) (same as gte-tiny)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('Mihaiii/gte-micro-v3')
model = AutoModel.from_pretrained('Mihaiii/gte-micro-v3')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Limitation (same as gte-small)
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
- Downloads last month
- 379
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Spaces using Mihaiii/gte-micro-v3 2
Evaluation results
- accuracy on MTEB AmazonCounterfactualClassification (en)test set self-reported71.433
- ap on MTEB AmazonCounterfactualClassification (en)test set self-reported33.562
- f1 on MTEB AmazonCounterfactualClassification (en)test set self-reported65.185
- accuracy on MTEB AmazonPolarityClassificationtest set self-reported77.721
- ap on MTEB AmazonPolarityClassificationtest set self-reported72.303
- f1 on MTEB AmazonPolarityClassificationtest set self-reported77.624
- accuracy on MTEB AmazonReviewsClassification (en)test set self-reported38.956
- f1 on MTEB AmazonReviewsClassification (en)test set self-reported38.591
- v_measure on MTEB ArxivClusteringP2Ptest set self-reported41.143
- v_measure on MTEB ArxivClusteringS2Stest set self-reported31.794