SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-mpnet-base-dot-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/multi-qa-mpnet-base-dot-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Dot Product
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Marco127/Argu_T1")
# Run inference
sentences = [
' In the event of a disturbance, one polite request (warning) will\nbe given to reduce the noise. If our request is not followed, the guest will be asked to leave\nthe hotel without refund and may be charged Guest Compensation Disturbance Fee.',
' In the event of a disturbance, one polite request (warning) will\nbe given to reduce the noise. If our request is not followed, the guest will be asked to leave\nthe hotel without refund and may be charged Guest Compensation Disturbance Fee.',
'\nWithout limiting the generality of the aforementioned, it applies to pay-to-view TV programmes or videos, as\nwell as telephone calls or any other expenses of a similar nature that is made from your room, you will be\ndeemed to be the contracting party.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
dot_accuracy | 0.6746 |
dot_accuracy_threshold | 49.0201 |
dot_f1 | 0.4933 |
dot_f1_threshold | 35.0242 |
dot_precision | 0.3293 |
dot_recall | 0.9821 |
dot_ap | 0.3294 |
dot_mcc | -0.0392 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 672 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 672 samples:
sentence1 sentence2 label type string string int details - min: 11 tokens
- mean: 48.63 tokens
- max: 156 tokens
- min: 11 tokens
- mean: 48.63 tokens
- max: 156 tokens
- 0: ~66.67%
- 1: ~33.33%
- Samples:
sentence1 sentence2 label
The pets can not be left without supervision if there is a risk of causing any
damage or might disturb other guests.
The pets can not be left without supervision if there is a risk of causing any
damage or might disturb other guests.0
Any guest in violation of these rules may be asked to leave the hotel with no refund. Extra copies of these
rules are available at the Front Desk upon request.
Any guest in violation of these rules may be asked to leave the hotel with no refund. Extra copies of these
rules are available at the Front Desk upon request.0
Consuming the products from the minibar involves additional costs. You can find the
prices in the kitchen area.
Consuming the products from the minibar involves additional costs. You can find the
prices in the kitchen area.0
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 169 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 169 samples:
sentence1 sentence2 label type string string int details - min: 13 tokens
- mean: 46.01 tokens
- max: 156 tokens
- min: 13 tokens
- mean: 46.01 tokens
- max: 156 tokens
- 0: ~66.86%
- 1: ~33.14%
- Samples:
sentence1 sentence2 label
I understand and accept that the BON Hotels Group collects the personal information ("personal
information") of all persons in my party for purposes of loyalty programmes and special offers. I, on behalf of
all in my party, expressly consent and grant permission to the BON Hotels Group to: -
collect, collate, process, study and use the personal information; and
communicate directly with me/us from time to time, unless I have stated to the contrary below.
I understand and accept that the BON Hotels Group collects the personal information ("personal
information") of all persons in my party for purposes of loyalty programmes and special offers. I, on behalf of
all in my party, expressly consent and grant permission to the BON Hotels Group to: -
collect, collate, process, study and use the personal information; and
communicate directly with me/us from time to time, unless I have stated to the contrary below.0
However, in lieu of the above, any such goods will only be kept by us for 6 (six) months. At the end of which
period, we reserve the right in our sole discretion to dispose thereof and you will have no right of recourse
against us.However, in lieu of the above, any such goods will only be kept by us for 6 (six) months. At the end of which
period, we reserve the right in our sole discretion to dispose thereof and you will have no right of recourse
against us.0
In cases where the hotel
suffers damage (either physical, or moral) due to the guests’ violation of the above rules, it
may charge a compensation fee in proportion to the damage. Moral damage may be for
example disturbing other guests, thus ruining the reputation of the hotel.In cases where the hotel
suffers damage (either physical, or moral) due to the guests’ violation of the above rules, it
may charge a compensation fee in proportion to the damage. Moral damage may be for
example disturbing other guests, thus ruining the reputation of the hotel.0
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | dot_ap |
---|---|---|---|---|
-1 | -1 | - | - | 0.3294 |
2.3333 | 100 | 0.0004 | 0.0000 | - |
4.6905 | 200 | 0.0003 | 0.0000 | - |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Marco127/Argu_T1
Evaluation results
- Dot Accuracy on Unknownself-reported0.675
- Dot Accuracy Threshold on Unknownself-reported49.020
- Dot F1 on Unknownself-reported0.493
- Dot F1 Threshold on Unknownself-reported35.024
- Dot Precision on Unknownself-reported0.329
- Dot Recall on Unknownself-reported0.982
- Dot Ap on Unknownself-reported0.329
- Dot Mcc on Unknownself-reported-0.039