whisper-small-nl / README.md
M2LabOrg's picture
End of training
7e4b1fd verified
metadata
language:
  - nl
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper small nl - Michel Mesquita
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: nl
          split: None
          args: 'config: nl, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 11.082344995548643

Whisper small nl - Michel Mesquita

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1846
  • Wer: 11.0823

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1554 0.3897 1000 0.2229 13.6293
0.1351 0.7794 2000 0.2025 12.4618
0.0522 1.1691 3000 0.1898 11.5152
0.0525 1.5588 4000 0.1846 11.0823

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1