Kuongan's picture
Training completed!
836ecdf verified
metadata
library_name: transformers
license: mit
base_model: microsoft/deberta-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: CS221-deberta-base-finetuned-semeval-aug
    results: []

CS221-deberta-base-finetuned-semeval-aug

This model is a fine-tuned version of microsoft/deberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2871
  • F1: 0.8364
  • Roc Auc: 0.8738
  • Accuracy: 0.6387

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.2713 1.0 139 0.3886 0.7310 0.8051 0.4228
0.2914 2.0 278 0.3337 0.7849 0.8464 0.5248
0.2201 3.0 417 0.3073 0.7995 0.8511 0.5501
0.1444 4.0 556 0.3027 0.8275 0.8727 0.6007
0.0964 5.0 695 0.2871 0.8364 0.8738 0.6387
0.0536 6.0 834 0.3024 0.8432 0.8796 0.6612
0.042 7.0 973 0.2909 0.8631 0.8960 0.6920
0.0334 8.0 1112 0.2976 0.8675 0.9002 0.7037

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0