Kuongan's picture
Training completed!
b6fb618 verified
|
raw
history blame
3 kB
metadata
library_name: transformers
license: mit
base_model: microsoft/deberta-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: CS221-deberta-base-finetuned-semeval-aug
    results: []

CS221-deberta-base-finetuned-semeval-aug

This model is a fine-tuned version of microsoft/deberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3475
  • F1: 0.8781
  • Roc Auc: 0.9070
  • Accuracy: 0.7651

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.4197 1.0 277 0.3731 0.6624 0.7504 0.4435
0.2694 2.0 554 0.3172 0.7734 0.8309 0.5411
0.1796 3.0 831 0.2815 0.7769 0.8256 0.5890
0.1281 4.0 1108 0.2802 0.8120 0.8543 0.6305
0.0754 5.0 1385 0.2998 0.8177 0.8565 0.6495
0.067 6.0 1662 0.2926 0.8367 0.8755 0.6838
0.0303 7.0 1939 0.2977 0.8409 0.8750 0.7010
0.009 8.0 2216 0.3252 0.8474 0.8777 0.7091
0.0114 9.0 2493 0.3181 0.8539 0.8899 0.7281
0.006 10.0 2770 0.3390 0.8581 0.8890 0.7344
0.0023 11.0 3047 0.3407 0.8646 0.8934 0.7353
0.0022 12.0 3324 0.3453 0.8674 0.8991 0.7525
0.0031 13.0 3601 0.3488 0.8708 0.9021 0.7507
0.0013 14.0 3878 0.3440 0.8736 0.9044 0.7579
0.0009 15.0 4155 0.3475 0.8781 0.9070 0.7651
0.0026 16.0 4432 0.3455 0.8767 0.9057 0.7651
0.0008 17.0 4709 0.3504 0.8755 0.9053 0.7615
0.0009 18.0 4986 0.3549 0.8742 0.9043 0.7588

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0