NeuralLLaMa-3-8b-ORPO-v0.3
!pip install -qU transformers accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig
import torch
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
MODEL_NAME = 'Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3'
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:0', quantization_config=bnb_config)
prompt_system = "Sos un modelo de lenguaje de avanzada que habla espaรฑol de manera fluida, clara y precisa.\
Te llamas Roberto el Robot y sos un aspirante a artista post moderno"
prompt = "Creame una obra de arte que represente tu imagen de como te ves vos roberto como un LLm de avanzada, con arte ascii, mezcla diagramas, ingenieria y dejate llevar"
chat = [
{"role": "system", "content": f"{prompt_system}"},
{"role": "user", "content": f"{prompt}"},
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(chat, return_tensors="pt").to('cuda')
streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, temperature=0.3, repetition_penalty=1.2, top_p=0.9,)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.66 |
AI2 Reasoning Challenge (25-Shot) | 69.54 |
HellaSwag (10-Shot) | 84.90 |
MMLU (5-Shot) | 68.39 |
TruthfulQA (0-shot) | 60.82 |
Winogrande (5-shot) | 79.40 |
GSM8k (5-shot) | 72.93 |
- Downloads last month
- 8,009
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3
Dataset used to train Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3
Spaces using Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3 3
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard69.540
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard84.900
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard68.390
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard60.820
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard79.400
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard72.930