lilt-en-funsd / README.md
KrisKrit's picture
End of training
f1d162d verified
|
raw
history blame
7.87 kB
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6470
  • Answer: {'precision': 0.8841607565011821, 'recall': 0.9155446756425949, 'f1': 0.899579073962718, 'number': 817}
  • Header: {'precision': 0.6574074074074074, 'recall': 0.5966386554621849, 'f1': 0.6255506607929515, 'number': 119}
  • Question: {'precision': 0.900804289544236, 'recall': 0.935933147632312, 'f1': 0.9180327868852459, 'number': 1077}
  • Overall Precision: 0.8813
  • Overall Recall: 0.9076
  • Overall F1: 0.8943
  • Overall Accuracy: 0.8114

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4017 10.53 200 1.0898 {'precision': 0.8257491675915649, 'recall': 0.9106487148102815, 'f1': 0.8661233993015134, 'number': 817} {'precision': 0.49166666666666664, 'recall': 0.4957983193277311, 'f1': 0.4937238493723849, 'number': 119} {'precision': 0.8689591078066915, 'recall': 0.8681522748375116, 'f1': 0.8685555039479796, 'number': 1077} 0.8288 0.8634 0.8457 0.7811
0.0453 21.05 400 1.1928 {'precision': 0.8400900900900901, 'recall': 0.9130966952264382, 'f1': 0.8750733137829912, 'number': 817} {'precision': 0.5575221238938053, 'recall': 0.5294117647058824, 'f1': 0.543103448275862, 'number': 119} {'precision': 0.8885869565217391, 'recall': 0.9108635097493036, 'f1': 0.8995873452544704, 'number': 1077} 0.8504 0.8892 0.8694 0.8044
0.0148 31.58 600 1.3654 {'precision': 0.8174946004319654, 'recall': 0.9265605875152999, 'f1': 0.8686173264486519, 'number': 817} {'precision': 0.5391304347826087, 'recall': 0.5210084033613446, 'f1': 0.52991452991453, 'number': 119} {'precision': 0.8866171003717472, 'recall': 0.8857938718662952, 'f1': 0.8862052949372968, 'number': 1077} 0.8375 0.8808 0.8586 0.8086
0.0073 42.11 800 1.4733 {'precision': 0.8653395784543325, 'recall': 0.9045287637698899, 'f1': 0.8845002992220227, 'number': 817} {'precision': 0.6597938144329897, 'recall': 0.5378151260504201, 'f1': 0.5925925925925926, 'number': 119} {'precision': 0.8881057268722466, 'recall': 0.935933147632312, 'f1': 0.9113924050632911, 'number': 1077} 0.8682 0.8997 0.8836 0.8111
0.008 52.63 1000 1.6415 {'precision': 0.864963503649635, 'recall': 0.8702570379436965, 'f1': 0.8676021964612569, 'number': 817} {'precision': 0.5636363636363636, 'recall': 0.5210084033613446, 'f1': 0.5414847161572053, 'number': 119} {'precision': 0.8630490956072352, 'recall': 0.9303621169916435, 'f1': 0.8954423592493298, 'number': 1077} 0.8481 0.8818 0.8646 0.7959
0.0026 63.16 1200 1.5876 {'precision': 0.8830049261083743, 'recall': 0.8776009791921665, 'f1': 0.8802946593001842, 'number': 817} {'precision': 0.5564516129032258, 'recall': 0.5798319327731093, 'f1': 0.5679012345679013, 'number': 119} {'precision': 0.8905693950177936, 'recall': 0.9294336118848654, 'f1': 0.9095865515674693, 'number': 1077} 0.8675 0.8877 0.8775 0.8032
0.0013 73.68 1400 1.5427 {'precision': 0.8733572281959379, 'recall': 0.8947368421052632, 'f1': 0.8839177750906893, 'number': 817} {'precision': 0.6271186440677966, 'recall': 0.6218487394957983, 'f1': 0.6244725738396625, 'number': 119} {'precision': 0.9108455882352942, 'recall': 0.9201485608170845, 'f1': 0.9154734411085451, 'number': 1077} 0.8791 0.8922 0.8856 0.8115
0.0012 84.21 1600 1.5540 {'precision': 0.8790035587188612, 'recall': 0.9069767441860465, 'f1': 0.8927710843373493, 'number': 817} {'precision': 0.6216216216216216, 'recall': 0.5798319327731093, 'f1': 0.6000000000000001, 'number': 119} {'precision': 0.9066543438077634, 'recall': 0.9108635097493036, 'f1': 0.9087540528022232, 'number': 1077} 0.8797 0.8897 0.8847 0.8096
0.0007 94.74 1800 1.6470 {'precision': 0.8841607565011821, 'recall': 0.9155446756425949, 'f1': 0.899579073962718, 'number': 817} {'precision': 0.6574074074074074, 'recall': 0.5966386554621849, 'f1': 0.6255506607929515, 'number': 119} {'precision': 0.900804289544236, 'recall': 0.935933147632312, 'f1': 0.9180327868852459, 'number': 1077} 0.8813 0.9076 0.8943 0.8114
0.0004 105.26 2000 1.6446 {'precision': 0.877906976744186, 'recall': 0.9241126070991432, 'f1': 0.9004174120453191, 'number': 817} {'precision': 0.6739130434782609, 'recall': 0.5210084033613446, 'f1': 0.5876777251184835, 'number': 119} {'precision': 0.8982142857142857, 'recall': 0.9340761374187558, 'f1': 0.915794264906691, 'number': 1077} 0.8798 0.9056 0.8925 0.8196
0.0003 115.79 2200 1.6375 {'precision': 0.8638443935926774, 'recall': 0.9241126070991432, 'f1': 0.892962743938498, 'number': 817} {'precision': 0.7375, 'recall': 0.4957983193277311, 'f1': 0.592964824120603, 'number': 119} {'precision': 0.8999098286744815, 'recall': 0.9266480965645311, 'f1': 0.9130832570905763, 'number': 1077} 0.8783 0.9001 0.8891 0.8225
0.0003 126.32 2400 1.6489 {'precision': 0.8751458576429405, 'recall': 0.9179926560587516, 'f1': 0.8960573476702508, 'number': 817} {'precision': 0.6559139784946236, 'recall': 0.5126050420168067, 'f1': 0.5754716981132076, 'number': 119} {'precision': 0.9026149684400361, 'recall': 0.9294336118848654, 'f1': 0.9158279963403477, 'number': 1077} 0.8800 0.9001 0.8900 0.8166

Framework versions

  • Transformers 4.38.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2