|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
license: mit |
|
base_model: openai/whisper-large-v3-turbo |
|
tags: |
|
- wft |
|
- whisper |
|
- automatic-speech-recognition |
|
- audio |
|
- speech |
|
- generated_from_trainer |
|
datasets: |
|
- JacobLinCool/ami-disfluent |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-large-v3-turbo-verbatim-3-lora |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: JacobLinCool/ami-disfluent |
|
type: JacobLinCool/ami-disfluent |
|
metrics: |
|
- type: wer |
|
value: 7.726913698959442 |
|
name: Wer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-large-v3-turbo-verbatim-3-lora |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the JacobLinCool/ami-disfluent dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1459 |
|
- Wer: 7.7269 |
|
- Cer: 3.2519 |
|
- Decode Runtime: 111.0004 |
|
- Wer Runtime: 0.0705 |
|
- Cer Runtime: 0.0932 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 64 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Runtime | Wer Runtime | Cer Runtime | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:--------------:|:-----------:|:-----------:| |
|
| No log | 0 | 0 | 2.2169 | 32.7209 | 17.9205 | 106.5404 | 0.0825 | 0.1203 | |
|
| 0.1681 | 0.1 | 100 | 0.1998 | 9.9454 | 4.1038 | 108.1653 | 0.0730 | 0.0960 | |
|
| 0.1025 | 0.2 | 200 | 0.1693 | 8.6885 | 3.7458 | 109.6779 | 0.0707 | 0.0957 | |
|
| 0.2508 | 0.3 | 300 | 0.1590 | 8.3897 | 3.4931 | 110.3209 | 0.0716 | 0.0947 | |
|
| 0.1446 | 1.088 | 400 | 0.1571 | 8.2626 | 3.4939 | 110.1930 | 0.0718 | 0.0951 | |
|
| 0.1833 | 1.188 | 500 | 0.1505 | 8.0463 | 3.4298 | 110.3821 | 0.0709 | 0.0950 | |
|
| 0.1409 | 1.288 | 600 | 0.1489 | 7.9948 | 3.3401 | 110.6880 | 0.0709 | 0.0939 | |
|
| 0.1184 | 2.076 | 700 | 0.1492 | 7.9124 | 3.3181 | 110.6153 | 0.0728 | 0.0946 | |
|
| 0.1737 | 2.176 | 800 | 0.1468 | 7.8128 | 3.2583 | 110.7120 | 0.0714 | 0.0947 | |
|
| 0.1522 | 2.276 | 900 | 0.1462 | 7.7887 | 3.2604 | 110.7694 | 0.0710 | 0.0937 | |
|
| 0.1077 | 3.064 | 1000 | 0.1459 | 7.7269 | 3.2519 | 111.0004 | 0.0705 | 0.0932 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.48.0 |
|
- Pytorch 2.4.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |