JacobLinCool's picture
Upload README.md with huggingface_hub
048cdb2 verified
|
raw
history blame
2.15 kB
metadata
library_name: peft
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - wft
  - whisper
  - automatic-speech-recognition
  - audio
  - speech
  - generated_from_trainer
datasets:
  - hf-internal-testing/librispeech_asr_dummy
metrics:
  - wer
model-index:
  - name: wft-test-model
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: hf-internal-testing/librispeech_asr_dummy
          type: hf-internal-testing/librispeech_asr_dummy
        metrics:
          - type: wer
            value: 65.4320987654321
            name: Wer

wft-test-model

This model is a fine-tuned version of openai/whisper-tiny on the hf-internal-testing/librispeech_asr_dummy dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0315
  • Wer: 65.4321
  • Cer: 30.1947

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.8721 1.0 8 1.5609 74.0741 31.3264
0.8099 2.0 16 1.2784 69.6296 31.1453
0.3841 3.0 24 1.1096 75.3086 36.5776
0.1898 4.0 32 1.0460 68.6420 32.5939
0.1511 5.0 40 1.0315 65.4321 30.1947

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.5.0
  • Datasets 3.0.2
  • Tokenizers 0.20.1