Hibernates-MEA-R2-V0
An advanced AI system for visual sequence processing, extending the capabilities of MCG-NJU/videomae-large-finetuned-kinetics.
Key Performance Indicators:
- Optimal Loss: 0.4894
- Peak Accuracy: 80.43%
System Overview
Advanced AI architecture optimized for visual sequence understanding:
- Core: Deep learning transformer system
- Data Handling: Sequential frame processing
- Main Function: Visual content categorization
- Learning Cycles: 50 complete epochs
- Results Summary:
- Maximum Precision: 80.43% (epoch 7)
- Consistent Performance: 75%+ maintained
Applications & Requirements
Core Applications
- Visual sequence interpretation
- Dynamic content analysis
- Environmental context recognition
- Time-series visual processing
Technical Considerations
- Task-specific optimization
- Computing needs: High-performance GPU
- Memory constraints: 4-sample batching
- Data format: Standardized input required
Development Data
Implementation Details:
- Cycle Structure: 65 iterations per epoch
- Development Span: 3250 total iterations
- Assessment Methods: Dual metric system (loss/accuracy)
- Progress Metrics:
- Starting Point: 54% accuracy
- Final Result: 73.91%
- Best-case Loss: 0.4894
Implementation Specifications
Core Parameters
Implementation utilized the following configuration:
- Learning Rate: 1e-05
- Training Units: 4 per batch
- Validation Units: 4 per batch
- Random Seed: 42
- Optimization: Advanced weight management with adamw_torch
- Beta values: (0.9,0.999)
- Epsilon: 1e-08
- Rate Control: Linear adjustment
- Warmup Ratio: 0.1
- Total Iterations: 3250
Development Progress
Cycle Loss | Epoch | Step | Validation Loss | Success Rate |
---|---|---|---|---|
0.6186 | 0.02 | 65 | 0.7367 | 0.5435 |
0.5974 | 1.02 | 130 | 0.8185 | 0.5435 |
0.5491 | 2.02 | 195 | 0.8372 | 0.5435 |
0.6156 | 3.02 | 260 | 0.6620 | 0.5870 |
0.6255 | 4.02 | 325 | 0.6835 | 0.5435 |
0.438 | 5.02 | 390 | 1.2116 | 0.5435 |
0.4653 | 6.02 | 455 | 0.6002 | 0.5652 |
0.5876 | 7.02 | 520 | 0.4894 | 0.8043 |
0.3801 | 8.02 | 585 | 0.8324 | 0.5435 |
0.4474 | 9.02 | 650 | 1.1581 | 0.5652 |
0.694 | 10.02 | 715 | 0.5354 | 0.7174 |
0.4773 | 11.02 | 780 | 0.6181 | 0.6957 |
0.6208 | 12.02 | 845 | 0.5677 | 0.7609 |
0.344 | 13.02 | 910 | 0.7452 | 0.6087 |
0.254 | 14.02 | 975 | 0.6362 | 0.7391 |
0.4578 | 15.02 | 1040 | 0.8304 | 0.6957 |
0.3954 | 16.02 | 1105 | 0.6049 | 0.7609 |
0.248 | 17.02 | 1170 | 0.9506 | 0.6739 |
0.1334 | 18.02 | 1235 | 1.1876 | 0.6739 |
0.534 | 19.02 | 1300 | 0.6296 | 0.7391 |
0.3556 | 20.02 | 1365 | 1.3007 | 0.6957 |
0.5439 | 21.02 | 1430 | 1.5066 | 0.6739 |
0.4107 | 22.02 | 1495 | 0.9273 | 0.8043 |
0.61 | 23.02 | 1560 | 1.0008 | 0.7174 |
0.6482 | 24.02 | 1625 | 0.7548 | 0.7609 |
0.199 | 25.02 | 1690 | 0.7917 | 0.7826 |
0.1185 | 26.02 | 1755 | 0.7529 | 0.7826 |
0.3886 | 27.02 | 1820 | 0.8627 | 0.7609 |
0.0123 | 28.02 | 1885 | 1.3886 | 0.7174 |
0.5328 | 29.02 | 1950 | 1.2803 | 0.6957 |
0.2961 | 30.02 | 2015 | 1.4397 | 0.7174 |
0.1192 | 31.02 | 2080 | 2.2563 | 0.6304 |
0.145 | 32.02 | 2145 | 1.0465 | 0.7609 |
0.0924 | 33.02 | 2210 | 0.9859 | 0.7826 |
0.1016 | 34.02 | 2275 | 1.0758 | 0.7826 |
0.1894 | 35.02 | 2340 | 1.2088 | 0.7609 |
0.2657 | 36.02 | 2405 | 1.5409 | 0.7391 |
0.1235 | 37.02 | 2470 | 1.2736 | 0.7609 |
0.1539 | 38.02 | 2535 | 1.2608 | 0.7609 |
0.03 | 39.02 | 2600 | 1.2058 | 0.7609 |
0.1447 | 40.02 | 2665 | 1.1072 | 0.7609 |
0.0888 | 41.02 | 2730 | 1.1454 | 0.7826 |
0.0016 | 42.02 | 2795 | 1.1194 | 0.7826 |
0.1489 | 43.02 | 2860 | 1.2170 | 0.7609 |
0.0004 | 44.02 | 2925 | 1.1894 | 0.7609 |
0.0004 | 45.02 | 2990 | 1.3329 | 0.7391 |
0.0014 | 46.02 | 3055 | 1.1887 | 0.7609 |
0.1675 | 47.02 | 3120 | 1.2652 | 0.7391 |
0.012 | 48.02 | 3185 | 1.3228 | 0.7391 |
0.0475 | 49.02 | 3250 | 1.3507 | 0.7391 |
System Versions
- Transformers 4.46.2
- Pytorch 2.0.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Hibernates/Hibernates-MEA-R2-V0
Base model
MCG-NJU/videomae-large-finetuned-kinetics