Hibernates-MEA-R2-V0

An advanced AI system for visual sequence processing, extending the capabilities of MCG-NJU/videomae-large-finetuned-kinetics.

Key Performance Indicators:

  • Optimal Loss: 0.4894
  • Peak Accuracy: 80.43%

System Overview

Advanced AI architecture optimized for visual sequence understanding:

  • Core: Deep learning transformer system
  • Data Handling: Sequential frame processing
  • Main Function: Visual content categorization
  • Learning Cycles: 50 complete epochs
  • Results Summary:
    • Maximum Precision: 80.43% (epoch 7)
    • Consistent Performance: 75%+ maintained

Applications & Requirements

Core Applications

  • Visual sequence interpretation
  • Dynamic content analysis
  • Environmental context recognition
  • Time-series visual processing

Technical Considerations

  • Task-specific optimization
  • Computing needs: High-performance GPU
  • Memory constraints: 4-sample batching
  • Data format: Standardized input required

Development Data

Implementation Details:

  • Cycle Structure: 65 iterations per epoch
  • Development Span: 3250 total iterations
  • Assessment Methods: Dual metric system (loss/accuracy)
  • Progress Metrics:
    • Starting Point: 54% accuracy
    • Final Result: 73.91%
    • Best-case Loss: 0.4894

Implementation Specifications

Core Parameters

Implementation utilized the following configuration:

  • Learning Rate: 1e-05
  • Training Units: 4 per batch
  • Validation Units: 4 per batch
  • Random Seed: 42
  • Optimization: Advanced weight management with adamw_torch
    • Beta values: (0.9,0.999)
    • Epsilon: 1e-08
  • Rate Control: Linear adjustment
  • Warmup Ratio: 0.1
  • Total Iterations: 3250

Development Progress

Cycle Loss Epoch Step Validation Loss Success Rate
0.6186 0.02 65 0.7367 0.5435
0.5974 1.02 130 0.8185 0.5435
0.5491 2.02 195 0.8372 0.5435
0.6156 3.02 260 0.6620 0.5870
0.6255 4.02 325 0.6835 0.5435
0.438 5.02 390 1.2116 0.5435
0.4653 6.02 455 0.6002 0.5652
0.5876 7.02 520 0.4894 0.8043
0.3801 8.02 585 0.8324 0.5435
0.4474 9.02 650 1.1581 0.5652
0.694 10.02 715 0.5354 0.7174
0.4773 11.02 780 0.6181 0.6957
0.6208 12.02 845 0.5677 0.7609
0.344 13.02 910 0.7452 0.6087
0.254 14.02 975 0.6362 0.7391
0.4578 15.02 1040 0.8304 0.6957
0.3954 16.02 1105 0.6049 0.7609
0.248 17.02 1170 0.9506 0.6739
0.1334 18.02 1235 1.1876 0.6739
0.534 19.02 1300 0.6296 0.7391
0.3556 20.02 1365 1.3007 0.6957
0.5439 21.02 1430 1.5066 0.6739
0.4107 22.02 1495 0.9273 0.8043
0.61 23.02 1560 1.0008 0.7174
0.6482 24.02 1625 0.7548 0.7609
0.199 25.02 1690 0.7917 0.7826
0.1185 26.02 1755 0.7529 0.7826
0.3886 27.02 1820 0.8627 0.7609
0.0123 28.02 1885 1.3886 0.7174
0.5328 29.02 1950 1.2803 0.6957
0.2961 30.02 2015 1.4397 0.7174
0.1192 31.02 2080 2.2563 0.6304
0.145 32.02 2145 1.0465 0.7609
0.0924 33.02 2210 0.9859 0.7826
0.1016 34.02 2275 1.0758 0.7826
0.1894 35.02 2340 1.2088 0.7609
0.2657 36.02 2405 1.5409 0.7391
0.1235 37.02 2470 1.2736 0.7609
0.1539 38.02 2535 1.2608 0.7609
0.03 39.02 2600 1.2058 0.7609
0.1447 40.02 2665 1.1072 0.7609
0.0888 41.02 2730 1.1454 0.7826
0.0016 42.02 2795 1.1194 0.7826
0.1489 43.02 2860 1.2170 0.7609
0.0004 44.02 2925 1.1894 0.7609
0.0004 45.02 2990 1.3329 0.7391
0.0014 46.02 3055 1.1887 0.7609
0.1675 47.02 3120 1.2652 0.7391
0.012 48.02 3185 1.3228 0.7391
0.0475 49.02 3250 1.3507 0.7391

System Versions

  • Transformers 4.46.2
  • Pytorch 2.0.1+cu117
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
2
Safetensors
Model size
304M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Hibernates/Hibernates-MEA-R2-V0

Finetuned
(46)
this model