HassanCS's picture
Add new SentenceTransformer model
23bc246 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10000
  - loss:ContrastiveLoss
base_model: DeepChem/ChemBERTa-77M-MLM
widget:
  - source_sentence: CC(C)N=c1cc2n(-c3ccc(Cl)cc3)c3ccccc3nc-2cc1Nc1ccc(Cl)cc1
    sentences:
      - C[NH+]1CCC(=C2c3ccccc3CCn3c(C=O)c[nH+]c32)CC1
      - COc1ccc(C(=O)CC(=O)c2ccc(C(C)(C)C)cc2)cc1
      - CC1CNc2c(cccc2S(=O)(=O)NC(CCC[NH+]=C(N)N)C(=O)N2CCC(C)CC2C(=O)[O-])C1
  - source_sentence: CC(C)c1ccc2oc3nc(N)c(C(=O)[O-])cc3c(=O)c2c1
    sentences:
      - COC1=CC(=O)CC(C)C12Oc1c(Cl)c(OC)cc(OC)c1C2=O
      - CON=C(C(=O)NC1C(=O)N2C(C(=O)[O-])=C(C[N+]3(C)CCCC3)CSC12)c1csc(N)n1
      - >-
        CC1C=CC=CC=CC=CC=CC=CC=CC(OC2OC(C)C(O)C([NH3+])C2O)CC2OC(O)(CC(O)CC(O)C(O)CCC(O)CC(O)CC(=O)OC(C)C(C)C1O)CC(O)C2C(=O)[O-]
  - source_sentence: C[NH2+]C1CCc2[nH]c3ccc(C(N)=O)cc3c2C1
    sentences:
      - >-
        CC(OC(=O)c1ccccc1)C1=CCC23OCC[NH+](C)CC12CC(O)C12OC4(O)CCC1(C)C(CC=C32)C4
      - >-
        CC(=O)NC(Cc1ccc2ccccc2c1)C(=O)NC(Cc1ccc(Cl)cc1)C(=O)NC(Cc1cccnc1)C(=O)NC(CO)C(=O)NC(Cc1ccc(NC(=O)C2CC(=O)NC(=O)N2)cc1)C(=O)NC(Cc1ccc(NC(N)=O)cc1)C(=O)NC(CC(C)C)C(=O)NC(CCCC[NH2+]C(C)C)C(=O)N1CCCC1C(=O)NC(C)C(N)=O
      - C[NH+](C)CCOC(=O)C(c1ccccc1)C1(O)CCCC1
  - source_sentence: CC(C)n1c(C=CC(O)CC(O)CC(=O)[O-])c(-c2ccc(F)cc2)c2ccccc21
    sentences:
      - C#CC1(O)CCC2C3CCC4=C(CCC(=O)C4)C3CCC21C
      - CC(C=CC(C)C(C)(C)O)C1CCC2C(=CC=C3CC(O)CC(O)C3)CCCC21C
      - CC(C)CNCc1ccc(-c2ccccc2S(=O)(=O)N2CCCC2)cc1
  - source_sentence: CC#CCn1c(N2CCCC([NH3+])C2)nc2c1c(=O)n(Cc1nc(C)c3ccccc3n1)c(=O)n2C
    sentences:
      - C[N+]1(C)CCCC(OC(=O)C(O)(c2ccccc2)c2ccccc2)C1
      - CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1
      - CC12CCC(=O)C=C1CCC1C2C(O)CC2(C)C1CCC2(O)C(=O)COC(=O)CCC1CCCC1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
model-index:
  - name: SentenceTransformer based on DeepChem/ChemBERTa-77M-MLM
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: all dev
          type: all-dev
        metrics:
          - type: cosine_accuracy
            value: 0.9066
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.5664876699447632
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9510122731564041
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.5664876699447632
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9067813562712542
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9997794441993825
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9523113003188102
            name: Cosine Ap

SentenceTransformer based on DeepChem/ChemBERTa-77M-MLM

This is a sentence-transformers model finetuned from DeepChem/ChemBERTa-77M-MLM. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: DeepChem/ChemBERTa-77M-MLM
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("HassanCS/chemBERTa-tuned-on-ClinTox-3")
# Run inference
sentences = [
    'CC#CCn1c(N2CCCC([NH3+])C2)nc2c1c(=O)n(Cc1nc(C)c3ccccc3n1)c(=O)n2C',
    'CC12CCC(=O)C=C1CCC1C2C(O)CC2(C)C1CCC2(O)C(=O)COC(=O)CCC1CCCC1',
    'CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9066
cosine_accuracy_threshold 0.5665
cosine_f1 0.951
cosine_f1_threshold 0.5665
cosine_precision 0.9068
cosine_recall 0.9998
cosine_ap 0.9523

Training Details

Training Dataset

Unnamed Dataset

  • Size: 10,000 training samples
  • Columns: smiles1, smiles2, and label
  • Approximate statistics based on the first 1000 samples:
    smiles1 smiles2 label
    type string string int
    details
    • min: 3 tokens
    • mean: 40.69 tokens
    • max: 221 tokens
    • min: 4 tokens
    • mean: 51.43 tokens
    • max: 221 tokens
    • 0: ~14.90%
    • 1: ~85.10%
  • Samples:
    smiles1 smiles2 label
    Cn1c(=O)c2c(ncn2C)n(C)c1=O Cc1cc2c(s1)=Nc1ccccc1NC=2N1CCNH+CC1 1
    Oc1ccc(OCc2ccccc2)cc1 Oc1ccc(CCCC[NH2+]CC(O)c2ccc(O)c(O)c2)cc1 1
    OCC(S)CS CC12CCC(=O)C=C1CCC1C2C(O)CC2(C)C1CCC2(O)C(=O)CO 0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 5,000 evaluation samples
  • Columns: smiles1, smiles2, and label
  • Approximate statistics based on the first 1000 samples:
    smiles1 smiles2 label
    type string string int
    details
    • min: 18 tokens
    • mean: 56.96 tokens
    • max: 209 tokens
    • min: 18 tokens
    • mean: 61.21 tokens
    • max: 244 tokens
    • 0: ~10.00%
    • 1: ~90.00%
  • Samples:
    smiles1 smiles2 label
    CC(=CC(=O)OCCCCCCCCC(=O)[O-])CC1OCC(CC2OC2C(C)C(C)O)C(O)C1O CC(C=CC(C)C(C)(C)O)C1CCC2C(=CC=C3CC(O)CC(O)C3)CCCC21C 1
    C=C1c2cccc([O-])c2C(=O)C2=C([O-])C3(O)C(=O)C(C(N)=O)=C([O-])C(NH+C)C3C(O)C12 CC(c1ncncc1F)C(O)(Cn1cncn1)c1ccc(F)cc1F 1
    CC(C)CC1C(=O)N2CCCC2C2(O)OC(NC(=O)C3C=C4c5cccc6[nH]c(Br)c(c56)CC4NH+C3)(C(C)C)C(=O)N12 CNH+CCC=C1c2ccccc2Sc2ccc(Cl)cc21 1
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss all-dev_cosine_ap
0.8 500 0.0264 0.0112 0.9213
1.6 1000 0.0152 0.0122 0.9362
2.4 1500 0.0134 0.0128 0.9463
3.2 2000 0.0112 0.0134 0.9502
4.0 2500 0.01 0.0125 0.9513
4.8 3000 0.0097 0.0132 0.9523

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}