Yes, its fine we have finally AGI Lora at home
AGI internally achieved confirmed lol(and now public)
now besides joke, this is an model made to reason, i didnt made the benchmark yet, but its gonna or be comparable to deepseek R1 or surpasses it! (the merged model is on the works and its gonna be released today!)
See axolotl config
axolotl version: 0.6.0
base_model: /root/Hermes-3-Llama-3.1-405B-Uncensored
tokenizer_type: AutoTokenizer
load_in_4bit: true
strict: false
datasets:
- path: GuilhermeNaturaUmana/Reasoning-deepseek
type: chat_template
chat_template: llama3
field_messages: messages
message_field_role: role
message_field_content: content
roles:
system:
- system
user:
- user
assistant:
- assistant
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: /workspace/data/Hermes-3-Llama-3.1-405B-Uncensored-Reasoner
save_safetensors: true
adapter: qlora
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 6
saves_per_epoch: 6
save_total_limit: 20
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
pad_token: <|finetune_right_pad_id|>
workspace/data/Hermes-3-Llama-3.1-405B-Uncensored-Reasoner
This model was trained from scratch on the GuilhermeNaturaUmana/Reasoning-deepseek dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 4
- total_train_batch_size: 12
- total_eval_batch_size: 3
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
Training results
Framework versions
- PEFT 0.14.0
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for GuilhermeNaturaUmana/Nature-Reason-1-AGI-LORA
Base model
meta-llama/Llama-3.1-405B
Finetuned
NousResearch/Hermes-3-Llama-3.1-405B