Yes, its fine we have finally AGI Lora at home

AGI internally achieved confirmed lol(and now public)

now besides joke, this is an model made to reason, i didnt made the benchmark yet, but its gonna or be comparable to deepseek R1 or surpasses it! (the merged model is on the works and its gonna be released today!)


Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: /root/Hermes-3-Llama-3.1-405B-Uncensored
tokenizer_type: AutoTokenizer

load_in_4bit: true
strict: false

datasets:
  - path: GuilhermeNaturaUmana/Reasoning-deepseek
    type: chat_template
    chat_template: llama3
    field_messages: messages
    message_field_role: role
    message_field_content: content
    roles:
      system:
        - system
      user:
        - user
      assistant:
        - assistant
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: /workspace/data/Hermes-3-Llama-3.1-405B-Uncensored-Reasoner
save_safetensors: true

adapter: qlora

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00001

train_on_inputs: false
group_by_length: false
bf16: true
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 6
saves_per_epoch: 6
save_total_limit: 20
weight_decay: 0.0
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: true
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
special_tokens:
  pad_token: <|finetune_right_pad_id|>

workspace/data/Hermes-3-Llama-3.1-405B-Uncensored-Reasoner

This model was trained from scratch on the GuilhermeNaturaUmana/Reasoning-deepseek dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 12
  • total_eval_batch_size: 3
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1.0

Training results

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
4
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for GuilhermeNaturaUmana/Nature-Reason-1-AGI-LORA

Dataset used to train GuilhermeNaturaUmana/Nature-Reason-1-AGI-LORA