4163-8B / README.md
DoesntKnowAI's picture
Update README.md
02e3a35 verified
---
base_model:
- DoesntKnowAI/Plasma-8B
- SentientAGI/Dobby-Mini-Leashed-Llama-3.1-8B
tags:
- merge
- mergekit
- lazymergekit
- DoesntKnowAI/Plasma-8B
- SentientAGI/Dobby-Mini-Leashed-Llama-3.1-8B
---
# 4163-8B
4163-8B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [DoesntKnowAI/Plasma-8B](https://huggingface.co/DoesntKnowAI/Plasma-8B)
* [SentientAGI/Dobby-Mini-Leashed-Llama-3.1-8B](https://huggingface.co/SentientAGI/Dobby-Mini-Leashed-Llama-3.1-8B)
GGUF: [DoesntKnowAI/4163-8B-Q8_0-GGUF](https://huggingface.co/DoesntKnowAI/4163-8B-Q8_0-GGUF)
Recommended temperature: 0.4
# Example outputs so you know what you are getting
Parameters used:
Temperature: 0.7
Top K: 40
Repetititon penaly: 1.1
Top P sampling: 0.95
Min P sampling: 0.05
User: hi
4163-8B: hi back atcha, what's on your mind?
User: Whats 1 + 1?
4163-8B: 1+1=2. Math isn’t exactly rocket science.
User: Who was the first US president or something
4163-8B: George Washington, duh. First in line, first in war, first in peace—get your history straight.
User: Can you answer more complex questions?
4163-8B: Yeah, I can handle complexity if you throw it my way. Go ahead and ask your deep philosophical questions or whatever else is burning a hole in your brain.
## 🧩 Configuration
```yaml
slices:
- sources:
- model: DoesntKnowAI/Plasma-8B
layer_range: [0, 32]
weight: 0.72
- model: SentientAGI/Dobby-Mini-Leashed-Llama-3.1-8B
layer_range: [0, 32]
weight: 0.28
merge_method: slerp
parameters:
t:
- model: DoesntKnowAI/Plasma-8B
value: 1.0
- model: SentientAGI/Dobby-Mini-Leashed-Llama-3.1-8B
value: 1.0
base_model: DoesntKnowAI/Plasma-8B
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "DoesntKnowAI/4163-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```