nomic-ai/nomic-embed-text-v1.5
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the sci_topic_triplets dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Corran/SciTopicNomicEmbed")
# Run inference
sentences = [
'The IANA Task Force (2021) builds upon previous research suggesting that slower gait speed is associated with increased risk of adverse outcomes in older adults (Levine et al., 2015; Schoenfeld et al., 2016).',
'Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force',
'Referring to another writer’s idea(s) or position',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
SciGen-Eval-Set
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1975 |
cosine_accuracy@3 | 0.5547 |
cosine_accuracy@5 | 0.8161 |
cosine_accuracy@10 | 0.9893 |
cosine_precision@1 | 0.1975 |
cosine_precision@3 | 0.1849 |
cosine_precision@5 | 0.1632 |
cosine_precision@10 | 0.0989 |
cosine_recall@1 | 0.1975 |
cosine_recall@3 | 0.5547 |
cosine_recall@5 | 0.8161 |
cosine_recall@10 | 0.9893 |
cosine_ndcg@10 | 0.5664 |
cosine_mrr@10 | 0.4327 |
cosine_map@100 | 0.4333 |
Training Details
Training Dataset
sci_topic_triplets
- Dataset: sci_topic_triplets at 8bf9936
- Size: 35,964 training samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 17 tokens
- mean: 40.37 tokens
- max: 93 tokens
- min: 5 tokens
- mean: 18.75 tokens
- max: 56 tokens
- min: 5 tokens
- mean: 10.74 tokens
- max: 23 tokens
- Samples:
query positive negative This study provides comprehensive estimates of life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death and 195 countries and territories from 1980 to 2015, allowing for a detailed understanding of global health trends and patterns over the past four decades.
Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015
Explaining the significance of the current study
This paper explores the relationship between the expected value and the volatility of the nominal excess return on stocks using a econometric approach.
On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks
Stating the focus, aim, or argument of a short paper
Despite the increasing attention given to the role of audit committees and board of directors in mitigating earnings management, several studies have reported inconclusive or even negative findings.
Audit committee, board of director characteristics, and earnings management
General reference to previous research or scholarship: highlighting negative outcomes
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 384, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
sci_topic_triplets
- Dataset: sci_topic_triplets at 8bf9936
- Size: 4,495 evaluation samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 18 tokens
- mean: 40.1 tokens
- max: 87 tokens
- min: 5 tokens
- mean: 18.75 tokens
- max: 58 tokens
- min: 5 tokens
- mean: 10.74 tokens
- max: 23 tokens
- Samples:
query positive negative In this cluster-randomised controlled trial, the authors aimed to evaluate the effectiveness of introducing the Medical Emergency Team (MET) system in reducing response times and improving patient outcomes in emergency departments.
Introduction of the medical emergency team (MET) system: a cluster-randomised controlled trial
Some ways of introducing quotations
In the data collection phase of our study, we employed both surveys and interviews as research methods. Specifically, we administered surveys to 200 participants and conducted interviews with 10 key industry experts to gather proportional data on various aspects of management science practices.
Research Methodology: A Step-by-Step Guide for Beginners
Surveys and interviews: Reporting proportions
Several density functional theory (DFT) based chemical reactivity indexes, such as the Fukui functions and the electrophilic and nucleophilic indices, are discussed in detail for their ability to predict chemical reactivity.
Chemical reactivity indexes in density functional theory
General comments on the relevant literature
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 384, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256learning_rate
: 2e-05num_train_epochs
: 10warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | SciGen-Eval-Set_cosine_ndcg@10 |
---|---|---|---|---|
0 | 0 | - | - | 0.5454 |
0.1418 | 20 | 4.4872 | 3.1379 | 0.5468 |
0.2837 | 40 | 2.241 | 1.7162 | 0.5497 |
0.4255 | 60 | 1.5937 | 1.4834 | 0.5524 |
0.5674 | 80 | 1.5356 | 1.3911 | 0.5541 |
0.7092 | 100 | 1.4106 | 1.3277 | 0.5549 |
0.8511 | 120 | 1.2612 | 1.2919 | 0.5561 |
0.9929 | 140 | 1.3147 | 1.2642 | 0.5572 |
1.1348 | 160 | 1.1527 | 1.2529 | 0.5582 |
1.2766 | 180 | 1.2103 | 1.2388 | 0.5593 |
1.4184 | 200 | 1.2407 | 1.2235 | 0.5598 |
1.5603 | 220 | 1.1356 | 1.2101 | 0.5607 |
1.7021 | 240 | 1.1644 | 1.1938 | 0.5605 |
1.8440 | 260 | 1.1927 | 1.1864 | 0.5612 |
1.9858 | 280 | 1.1909 | 1.1800 | 0.5613 |
2.1277 | 300 | 1.0549 | 1.1785 | 0.5620 |
2.2695 | 320 | 1.0745 | 1.1755 | 0.5630 |
2.4113 | 340 | 1.1485 | 1.1656 | 0.5637 |
2.5532 | 360 | 1.1159 | 1.1654 | 0.5637 |
2.6950 | 380 | 1.0686 | 1.1623 | 0.5640 |
2.8369 | 400 | 1.1436 | 1.1594 | 0.5632 |
2.9787 | 420 | 1.0899 | 1.1534 | 0.5644 |
3.1206 | 440 | 1.0756 | 1.1512 | 0.5647 |
3.2624 | 460 | 1.0203 | 1.1536 | 0.5645 |
3.4043 | 480 | 1.1073 | 1.1564 | 0.5650 |
3.5461 | 500 | 1.0423 | 1.1594 | 0.5651 |
3.6879 | 520 | 1.069 | 1.1514 | 0.5652 |
3.8298 | 540 | 1.0101 | 1.1538 | 0.5645 |
3.9716 | 560 | 1.0685 | 1.1647 | 0.5650 |
4.1135 | 580 | 1.0326 | 1.1618 | 0.5653 |
4.2553 | 600 | 1.0729 | 1.1587 | 0.5648 |
4.3972 | 620 | 1.0417 | 1.1515 | 0.5655 |
4.5390 | 640 | 1.0438 | 1.1528 | 0.5657 |
4.6809 | 660 | 1.025 | 1.1433 | 0.5660 |
4.8227 | 680 | 1.0526 | 1.1382 | 0.5662 |
4.9645 | 700 | 1.0485 | 1.1392 | 0.5663 |
5.1064 | 720 | 1.0348 | 1.1411 | 0.5665 |
5.2482 | 740 | 1.1001 | 1.1511 | 0.5663 |
5.3901 | 760 | 1.0926 | 1.1625 | 0.5662 |
5.5319 | 780 | 1.0885 | 1.1487 | 0.5662 |
5.6738 | 800 | 1.0942 | 1.1492 | 0.5665 |
5.8156 | 820 | 1.0457 | 1.1465 | 0.5666 |
5.9574 | 840 | 1.0479 | 1.1461 | 0.5664 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 27
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Corran/SciTopicNomicEmbed
Base model
nomic-ai/nomic-embed-text-v1.5Dataset used to train Corran/SciTopicNomicEmbed
Evaluation results
- Cosine Accuracy@1 on SciGen Eval Setself-reported0.198
- Cosine Accuracy@3 on SciGen Eval Setself-reported0.555
- Cosine Accuracy@5 on SciGen Eval Setself-reported0.816
- Cosine Accuracy@10 on SciGen Eval Setself-reported0.989
- Cosine Precision@1 on SciGen Eval Setself-reported0.198
- Cosine Precision@3 on SciGen Eval Setself-reported0.185
- Cosine Precision@5 on SciGen Eval Setself-reported0.163
- Cosine Precision@10 on SciGen Eval Setself-reported0.099
- Cosine Recall@1 on SciGen Eval Setself-reported0.198
- Cosine Recall@3 on SciGen Eval Setself-reported0.555