nomic-ai/nomic-embed-text-v1.5

This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the sci_topic_triplets dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/nomic-embed-text-v1.5
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Corran/SciTopicNomicEmbed")
# Run inference
sentences = [
    'The IANA Task Force (2021) builds upon previous research suggesting that slower gait speed is associated with increased risk of adverse outcomes in older adults (Levine et al., 2015; Schoenfeld et al., 2016).',
    'Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force',
    'Referring to another writer’s idea(s) or position',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.1975
cosine_accuracy@3 0.5547
cosine_accuracy@5 0.8161
cosine_accuracy@10 0.9893
cosine_precision@1 0.1975
cosine_precision@3 0.1849
cosine_precision@5 0.1632
cosine_precision@10 0.0989
cosine_recall@1 0.1975
cosine_recall@3 0.5547
cosine_recall@5 0.8161
cosine_recall@10 0.9893
cosine_ndcg@10 0.5664
cosine_mrr@10 0.4327
cosine_map@100 0.4333

Training Details

Training Dataset

sci_topic_triplets

  • Dataset: sci_topic_triplets at 8bf9936
  • Size: 35,964 training samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 17 tokens
    • mean: 40.37 tokens
    • max: 93 tokens
    • min: 5 tokens
    • mean: 18.75 tokens
    • max: 56 tokens
    • min: 5 tokens
    • mean: 10.74 tokens
    • max: 23 tokens
  • Samples:
    query positive negative
    This study provides comprehensive estimates of life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death and 195 countries and territories from 1980 to 2015, allowing for a detailed understanding of global health trends and patterns over the past four decades. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015 Explaining the significance of the current study
    This paper explores the relationship between the expected value and the volatility of the nominal excess return on stocks using a econometric approach. On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks Stating the focus, aim, or argument of a short paper
    Despite the increasing attention given to the role of audit committees and board of directors in mitigating earnings management, several studies have reported inconclusive or even negative findings. Audit committee, board of director characteristics, and earnings management General reference to previous research or scholarship: highlighting negative outcomes
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            384,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

sci_topic_triplets

  • Dataset: sci_topic_triplets at 8bf9936
  • Size: 4,495 evaluation samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 18 tokens
    • mean: 40.1 tokens
    • max: 87 tokens
    • min: 5 tokens
    • mean: 18.75 tokens
    • max: 58 tokens
    • min: 5 tokens
    • mean: 10.74 tokens
    • max: 23 tokens
  • Samples:
    query positive negative
    In this cluster-randomised controlled trial, the authors aimed to evaluate the effectiveness of introducing the Medical Emergency Team (MET) system in reducing response times and improving patient outcomes in emergency departments. Introduction of the medical emergency team (MET) system: a cluster-randomised controlled trial Some ways of introducing quotations
    In the data collection phase of our study, we employed both surveys and interviews as research methods. Specifically, we administered surveys to 200 participants and conducted interviews with 10 key industry experts to gather proportional data on various aspects of management science practices. Research Methodology: A Step-by-Step Guide for Beginners Surveys and interviews: Reporting proportions
    Several density functional theory (DFT) based chemical reactivity indexes, such as the Fukui functions and the electrophilic and nucleophilic indices, are discussed in detail for their ability to predict chemical reactivity. Chemical reactivity indexes in density functional theory General comments on the relevant literature
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            384,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss SciGen-Eval-Set_cosine_ndcg@10
0 0 - - 0.5454
0.1418 20 4.4872 3.1379 0.5468
0.2837 40 2.241 1.7162 0.5497
0.4255 60 1.5937 1.4834 0.5524
0.5674 80 1.5356 1.3911 0.5541
0.7092 100 1.4106 1.3277 0.5549
0.8511 120 1.2612 1.2919 0.5561
0.9929 140 1.3147 1.2642 0.5572
1.1348 160 1.1527 1.2529 0.5582
1.2766 180 1.2103 1.2388 0.5593
1.4184 200 1.2407 1.2235 0.5598
1.5603 220 1.1356 1.2101 0.5607
1.7021 240 1.1644 1.1938 0.5605
1.8440 260 1.1927 1.1864 0.5612
1.9858 280 1.1909 1.1800 0.5613
2.1277 300 1.0549 1.1785 0.5620
2.2695 320 1.0745 1.1755 0.5630
2.4113 340 1.1485 1.1656 0.5637
2.5532 360 1.1159 1.1654 0.5637
2.6950 380 1.0686 1.1623 0.5640
2.8369 400 1.1436 1.1594 0.5632
2.9787 420 1.0899 1.1534 0.5644
3.1206 440 1.0756 1.1512 0.5647
3.2624 460 1.0203 1.1536 0.5645
3.4043 480 1.1073 1.1564 0.5650
3.5461 500 1.0423 1.1594 0.5651
3.6879 520 1.069 1.1514 0.5652
3.8298 540 1.0101 1.1538 0.5645
3.9716 560 1.0685 1.1647 0.5650
4.1135 580 1.0326 1.1618 0.5653
4.2553 600 1.0729 1.1587 0.5648
4.3972 620 1.0417 1.1515 0.5655
4.5390 640 1.0438 1.1528 0.5657
4.6809 660 1.025 1.1433 0.5660
4.8227 680 1.0526 1.1382 0.5662
4.9645 700 1.0485 1.1392 0.5663
5.1064 720 1.0348 1.1411 0.5665
5.2482 740 1.1001 1.1511 0.5663
5.3901 760 1.0926 1.1625 0.5662
5.5319 780 1.0885 1.1487 0.5662
5.6738 800 1.0942 1.1492 0.5665
5.8156 820 1.0457 1.1465 0.5666
5.9574 840 1.0479 1.1461 0.5664

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
27
Safetensors
Model size
137M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Corran/SciTopicNomicEmbed

Finetuned
(18)
this model

Dataset used to train Corran/SciTopicNomicEmbed

Evaluation results