CheeLi03's picture
Upload tokenizer
10bc224 verified
|
raw
history blame
2.07 kB
metadata
base_model: openai/whisper-base
datasets:
  - fleurs
language:
  - it
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Tiny Itlian - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: it_it
          split: None
          args: 'config: it split: test'
        metrics:
          - type: wer
            value: 28.895899053627762
            name: Wer

Whisper Tiny Itlian - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5007
  • Wer: 28.8959

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0648 4.6729 1000 0.3617 28.7455
0.0048 9.3458 2000 0.4424 26.5858
0.0025 14.0187 3000 0.4710 28.1291
0.0016 18.6916 4000 0.4928 28.2601
0.0013 23.3645 5000 0.5007 28.8959

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1