Uploaded model

  • Developed by: Chasottco
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.


Google Colabでの動作を想定

# 必要なライブラリをインストール
%%capture
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install -U torch
!pip install -U peft

# 必要なライブラリを読み込み
from unsloth import FastLanguageModel
from peft import PeftModel
import torch
import json
from tqdm import tqdm
import re

# ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "Chasottco/llm-jp-3-13b-it-Chasottco"

# Hugging Face Token を指定
HF_TOKEN = ""

# unslothのFastLanguageModelで元のモデルをロード
dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は13Bモデルを扱うためTrue

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_id,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    trust_remote_code=True,
)

# 元のモデルにLoRAのアダプタを統合
model = PeftModel.from_pretrained(model, adapter_id, token=HF_TOKEN)

# google drive mount(事前にデータをアップロード)
from google.colab import drive
drive.mount('/content/drive')

# タスクとなるデータの読み込み
datasets = []
with open("/content/drive/MyDrive/2024松尾研LLM/elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
        line = line.strip()
        item += line
        if item.endswith("}"):
            datasets.append(json.loads(item))
            item = ""


# モデルを用いてタスクの推論
FastLanguageModel.for_inference(model)

results = []
for dt in tqdm(datasets):
    input = dt["input"]

    prompt = f"""### 指示\n{input}\n### 回答\n"""

    inputs = tokenizer([prompt], return_tensors="pt").to(model.device)

    outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True, do_sample=False, repetition_penalty=1.2)
    prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

    results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

---
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Chasottco/llm-jp-3-13b-it-Chasottco

Finetuned
(1124)
this model