MUDDFormer-2.8B is a pretrained language model on the Pile with 300B tokens, which uses a simple yet effective method to address the limitations of residual connections and enhance cross-layer information flow in Transformers. Please see downstrem evaluations and more details in the paper(MUDDFormer: Breaking Residual Bottlenecks in Transformers via Multiway Dynamic Dense Connections). In addition, we open-source Jax training code on (Github).
We recommend compiled version of MUDDFormer with torch.compile for inference acceleration. Please refer to Generation section for compile implementation.
Usage
Env
pip install transformers==4.40.2 torch==2.5.1 einops==0.8.0
Generation
import time
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
device = torch.device('cuda:0')
dtype = torch.bfloat16
MAX_BATCH_SIZE = 1
MAX_SEQ_LENGTH = 2048
NUM_TOKENS_TO_GENERATE = 10
COMPILE = True
OPTIMIZED_COMPILE = False
if OPTIMIZED_COMPILE:
import torch._dynamo.config
import torch._inductor.config
torch._dynamo.config.cache_size_limit = 64
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True
torch._inductor.config.fx_graph_cache = True
tokenizer = AutoTokenizer.from_pretrained("Caiyun-AI/MUDDFormer-2.8B")
model = AutoModelForCausalLM.from_pretrained("Caiyun-AI/MUDDFormer-2.8B", trust_remote_code=True)
_ = model.to(device=device,dtype=dtype)
with torch.device(device):
model.setup_caches(max_batch_size=MAX_BATCH_SIZE, max_seq_length=MAX_SEQ_LENGTH, dtype=dtype)
def decode_one_token(model, cur_token, input_pos):
logits = model(cur_token, input_pos=input_pos, return_tensor=True)
new_token = torch.argmax(logits[:, -1], dim=-1)[:,None]
return new_token
prompt = "Beijing is the capital of China. London is the capital of"
input_ids = tokenizer.encode(prompt, return_tensors='pt')
compiled_decode_one_token = torch.compile(decode_one_token,mode="reduce-overhead", fullgraph=True) if COMPILE else None
print('Start generating tokens, but it will take a few minutes to compile at the first time.')
for i in range(10):
t0 = time.time()
with torch.no_grad():
generated_ids = model.generate(input_ids.to(device),num_tokens_to_generate=NUM_TOKENS_TO_GENERATE, compiled_decode_one_token=compiled_decode_one_token)
text = tokenizer.decode(generated_ids[0])
if i ==0:
print(f'Generated text: {text}')
t1 = time.time()
print(f'Time consumed at iteration {i}: {t1-t0}s')
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.