|
--- |
|
license: mit |
|
base_model: facebook/bart-large-xsum |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- bleu |
|
model-index: |
|
- name: bart_samsum |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart_samsum |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4947 |
|
- Rouge1: 53.3294 |
|
- Rouge2: 28.6009 |
|
- Rougel: 44.2008 |
|
- Rougelsum: 49.2031 |
|
- Bleu: 0.0 |
|
- Meteor: 0.4887 |
|
- Gen Len: 30.1209 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Meteor | Gen Len | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:----:|:------:|:-------:| |
|
| 1.3838 | 0.9997 | 1841 | 1.5631 | 52.3252 | 27.2646 | 42.5893 | 48.2397 | 0.0 | 0.4825 | 32.0415 | |
|
| 1.0835 | 2.0 | 3683 | 1.4947 | 53.3294 | 28.6009 | 44.2008 | 49.2031 | 0.0 | 0.4887 | 30.1209 | |
|
| 0.8345 | 2.9997 | 5524 | 1.5956 | 52.1812 | 27.1239 | 42.9864 | 47.6384 | 0.0 | 0.4774 | 30.5446 | |
|
| 0.672 | 4.0 | 7366 | 1.6695 | 52.8148 | 27.4815 | 43.3732 | 48.4633 | 0.0 | 0.4836 | 31.0342 | |
|
| 0.538 | 4.9986 | 9205 | 1.8055 | 52.0988 | 26.762 | 42.5505 | 47.3721 | 0.0 | 0.4738 | 29.8901 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|