|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: answerdotai/ModernBERT-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: populism_model109 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# populism_model109 |
|
|
|
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3827 |
|
- Accuracy: 0.9004 |
|
- 1-f1: 0.2535 |
|
- 1-recall: 0.4737 |
|
- 1-precision: 0.1731 |
|
- Balanced Acc: 0.6949 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| |
|
| No log | 1.0 | 17 | 0.4790 | 0.8195 | 0.1864 | 0.5789 | 0.1111 | 0.7037 | |
|
| 0.5167 | 2.0 | 34 | 0.4572 | 0.8026 | 0.1732 | 0.5789 | 0.1019 | 0.6949 | |
|
| 0.3953 | 3.0 | 51 | 0.4053 | 0.9154 | 0.2623 | 0.4211 | 0.1905 | 0.6774 | |
|
| 0.3953 | 4.0 | 68 | 0.3964 | 0.8872 | 0.25 | 0.5263 | 0.1639 | 0.7135 | |
|
| 0.3107 | 5.0 | 85 | 0.3827 | 0.9004 | 0.2535 | 0.4737 | 0.1731 | 0.6949 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.0.dev0 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|