Built with Axolotl

See axolotl config

axolotl version: 0.6.0

adapter: lora
base_model: Korabbit/llama-2-ko-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: /workspace/axolotl/data/prepared
datasets:
- ds_type: json
  format: custom
  path: Aivesa/dataset_ea212b2c-7a64-40e6-b0ba-090dcd4d4cf9
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: Aivesa/7f64d457-d879-428f-895a-d47c066eebc8
hub_private_repo: true
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/outputs
pad_to_sequence_len: true
push_to_hub: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_safetensors: true
saves_per_epoch: 4
sequence_len: 512
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
use_accelerate: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ea212b2c-7a64-40e6-b0ba-090dcd4d4cf9
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ea212b2c-7a64-40e6-b0ba-090dcd4d4cf9
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

7f64d457-d879-428f-895a-d47c066eebc8

This model is a fine-tuned version of Korabbit/llama-2-ko-7b on the Aivesa/dataset_ea212b2c-7a64-40e6-b0ba-090dcd4d4cf9 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1518

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 10

Training results

Training Loss Epoch Step Validation Loss
3.2394 0.0108 3 3.6426
2.9842 0.0215 6 2.8471
1.676 0.0323 9 1.1518

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.0a0+e000cf0ad9.nv24.10
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Aivesa/7f64d457-d879-428f-895a-d47c066eebc8

Adapter
(314)
this model