haLLAwa2
haLLAwa2 is a merge of the following models using mergekit:
🧩 Configuration
slices:
- sources:
- model: OpenPipe/mistral-ft-optimized-1227
layer_range: [0, 32]
- model: machinists/Mistral-7B-SQL
layer_range: [0, 32]
merge_method: slerp
base_model: OpenPipe/mistral-ft-optimized-1227
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: bfloat16
\```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_AbacusResearch__haLLAwa2)
| Metric |Value|
|---------------------------------|----:|
|Avg. |64.44|
|AI2 Reasoning Challenge (25-Shot)|63.31|
|HellaSwag (10-Shot) |84.51|
|MMLU (5-Shot) |63.52|
|TruthfulQA (0-shot) |47.38|
|Winogrande (5-shot) |75.85|
|GSM8k (5-shot) |52.08|
- Downloads last month
- 43
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard63.310
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard84.510
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard63.520
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard47.380
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard75.850
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard52.080