autoevaluator
HF staff
Add evaluation results on the conll2003 config and test split of conll2003
fb042dc
license: apache-2.0 | |
tags: | |
- generated_from_trainer | |
datasets: | |
- conll2003 | |
metrics: | |
- precision | |
- recall | |
- f1 | |
- accuracy | |
model-index: | |
- name: bert-finetuned-ner | |
results: | |
- task: | |
type: token-classification | |
name: Token Classification | |
dataset: | |
name: conll2003 | |
type: conll2003 | |
config: conll2003 | |
split: validation | |
args: conll2003 | |
metrics: | |
- type: precision | |
value: 0.9316493313521546 | |
name: Precision | |
- type: recall | |
value: 0.9496802423426456 | |
name: Recall | |
- type: f1 | |
value: 0.9405783815317944 | |
name: F1 | |
- type: accuracy | |
value: 0.9861806087007712 | |
name: Accuracy | |
- task: | |
type: token-classification | |
name: Token Classification | |
dataset: | |
name: conll2003 | |
type: conll2003 | |
config: conll2003 | |
split: test | |
metrics: | |
- type: accuracy | |
value: 0.8996864215817588 | |
name: Accuracy | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWJkMzFiYTc0YzI3MGRiOGQ0MTA0OTgwYmQ3ODU2ZTk5MGQ5NGQwYjViMzhiZWFjNzUyMmYxM2QxOTQ5ZTI0MyIsInZlcnNpb24iOjF9.SECjYrUHXW-IJZPqjPMM15PAItaCHQKynFjkmu3cXj2wvUh-O_mvAvaqq3fLJSyNQfPyImRc89_gusSsgGD8Aw | |
- type: precision | |
value: 0.9290522347872914 | |
name: Precision | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTdhNzkwYTMzYzE0NzdkNzc0ODQ4NmYwNTVjOGI1ZGQ3YmZlNmJjNzEwNDFiOWZiMGMxYTM1YTIxNGVkMTc2NyIsInZlcnNpb24iOjF9.imy5h8_PQmOLSWZx341f_VdLqaXSUfgmnvBtq8r5l-tc9BbzUqdl5TiyxLyqOt0JFO0lQooirG1YxivynmesBw | |
- type: recall | |
value: 0.9153430381006068 | |
name: Recall | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzY5M2E3ZDc4NWFkNGFkOWY1Mzk3YzIyYzg0Y2U0NzM1ZWRkNjczM2QyODdkMTg5MDhlZDMwOThhMTA3NGFlYSIsInZlcnNpb24iOjF9.8aVjcW3T8W4a9LiEAgakRM_kechC9xK51nAl3SxypmES6MNxVjsYCD8wvxPF7ddgmTCB0vyCTeelgT6HuGhtCQ | |
- type: auc | |
value: NaN | |
name: AUC | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmQ0ZTk4ZWJmNmU4M2U1OTNiZGMyNmNmYmJmMzMwZjQ4MDRlYmYxOWJjNTM0N2FjMWExNGI1ZTVmN2I2MGZhOSIsInZlcnNpb24iOjF9.0B6-aHCUx_SdHfSTlcXlVh8mE3gQe7L2Dk2-RyLp7a3YUzOhJNAj--Bz0I5lGH0m7PffPwBuZpccdnFJfg_WAg | |
- type: f1 | |
value: 0.9221466869331375 | |
name: F1 | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDk1ZWY1MTVhYTZmYzNhYmZkNjdiNjNjMTk0OGMzNzQzMmE0MGI4NTc5YmViZTg3NDQ2MjE1YzNkZDUwZTc4NSIsInZlcnNpb24iOjF9.ZlDFXSg8DZL3KLeU3liwZYWgpF1wrTieUYTVg9lVkgYb7A5jlCcgT4X3LqXCScaIt84BS_6-eqNHV_ukJiUUAQ | |
- type: loss | |
value: 0.8573787212371826 | |
name: loss | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjY0OWJmZWI5ZTA5ODIzYzE5YmFkZmQ2OTIwOTJlNDU4ZmUyZDFlYTU1MmRjODRlMWZlMmMyYjUwNmQyYzhmNCIsInZlcnNpb24iOjF9.mCnEvOsb3-HlTzhiY7kboe1rCD8ikdyKgEPMixST1qbGoTmfff0ZclZL9Sjz46MREnLYNgPr_whSEzvMWC3aAw | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# bert-finetuned-ner | |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.0630 | |
- Precision: 0.9316 | |
- Recall: 0.9497 | |
- F1: 0.9406 | |
- Accuracy: 0.9862 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 8 | |
- eval_batch_size: 8 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 3 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | | |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | |
| 0.0885 | 1.0 | 1756 | 0.0692 | 0.9162 | 0.9312 | 0.9236 | 0.9813 | | |
| 0.0364 | 2.0 | 3512 | 0.0652 | 0.9233 | 0.9455 | 0.9342 | 0.9854 | | |
| 0.018 | 3.0 | 5268 | 0.0630 | 0.9316 | 0.9497 | 0.9406 | 0.9862 | | |
### Framework versions | |
- Transformers 4.27.4 | |
- Pytorch 2.0.0+cu117 | |
- Datasets 2.11.0 | |
- Tokenizers 0.13.3 | |