MARTINI_enrich_BERTopic_zaxdahavadis
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_zaxdahavadis")
topic_model.get_topic_info()
Topic overview
- Number of topics: 6
- Number of training documents: 500
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | diyarbakır - buyuksehir - gaziantep - malatya - kadın | 24 | -1_diyarbakır_buyuksehir_gaziantep_malatya |
0 | erdogan - basbakanı - kılıcdaroglu - azerbaycan - demirtas | 290 | 0_erdogan_basbakanı_kılıcdaroglu_azerbaycan |
1 | kurtarıldı - malatya - adıyaman - kahramanmaras - istanbul | 74 | 1_kurtarıldı_malatya_adıyaman_kahramanmaras |
2 | ukrayna - bayraktar - putin - operasyonunu - planında | 56 | 2_ukrayna_bayraktar_putin_operasyonunu |
3 | yıkılmadı - hırsınız - hazretlerinin - karsılıgını - insanları | 31 | 3_yıkılmadı_hırsınız_hazretlerinin_karsılıgını |
4 | fenerbahce - galatasaray - kayserispor - sampiyonlar - kırmızılılar | 25 | 4_fenerbahce_galatasaray_kayserispor_sampiyonlar |
Training hyperparameters
- calculate_probabilities: True
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: None
- seed_topic_list: None
- top_n_words: 10
- verbose: False
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 1.26.4
- HDBSCAN: 0.8.40
- UMAP: 0.5.7
- Pandas: 2.2.3
- Scikit-Learn: 1.5.2
- Sentence-transformers: 3.3.1
- Transformers: 4.46.3
- Numba: 0.60.0
- Plotly: 5.24.1
- Python: 3.10.12
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.