MARTINI_enrich_BERTopic_zaxdahavadis

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_zaxdahavadis")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 6
  • Number of training documents: 500
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 diyarbakır - buyuksehir - gaziantep - malatya - kadın 24 -1_diyarbakır_buyuksehir_gaziantep_malatya
0 erdogan - basbakanı - kılıcdaroglu - azerbaycan - demirtas 290 0_erdogan_basbakanı_kılıcdaroglu_azerbaycan
1 kurtarıldı - malatya - adıyaman - kahramanmaras - istanbul 74 1_kurtarıldı_malatya_adıyaman_kahramanmaras
2 ukrayna - bayraktar - putin - operasyonunu - planında 56 2_ukrayna_bayraktar_putin_operasyonunu
3 yıkılmadı - hırsınız - hazretlerinin - karsılıgını - insanları 31 3_yıkılmadı_hırsınız_hazretlerinin_karsılıgını
4 fenerbahce - galatasaray - kayserispor - sampiyonlar - kırmızılılar 25 4_fenerbahce_galatasaray_kayserispor_sampiyonlar

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.