MARTINI_enrich_BERTopic_DiedSuddenlyConnecticut

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_DiedSuddenlyConnecticut")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 15
  • Number of training documents: 1737
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 danbury - stamford - vaccinated - rn - july 21 -1_danbury_stamford_vaccinated_rn
0 naugatuck - mary - carolee - terryville - nurse 1012 0_naugatuck_mary_carolee_terryville
1 chemotherapy - lymphoblastic - diagnosed - megan - marrow 116 1_chemotherapy_lymphoblastic_diagnosed_megan
2 danbury - robert - steven - navy - moynihan 91 2_danbury_robert_steven_navy
3 norwalk - teachers - kristin - stafford - vaccinated 81 3_norwalk_teachers_kristin_stafford
4 uconn - vaccinated - snhu - colleges - unitedhealth 61 4_uconn_vaccinated_snhu_colleges
5 vaers - vaccinated - myocarditis - deaths - 65 59 5_vaers_vaccinated_myocarditis_deaths
6 firefighters - norwalk - responder - lieutenant - tracy 54 6_firefighters_norwalk_responder_lieutenant
7 micheal - larose - dahill - wajnowski - eversource 47 7_micheal_larose_dahill_wajnowski
8 defibrillator - icu - strokes - blockage - cody 46 8_defibrillator_icu_strokes_blockage
9 vaccinated - pfizer - shots - darien - toddlers 40 9_vaccinated_pfizer_shots_darien
10 vaccinating - clinic - pratt - hhc - fema 33 10_vaccinating_clinic_pratt_hhc
11 david - wethersfield - buckley - eisenberg - idaho 32 11_david_wethersfield_buckley_eisenberg
12 glioblastoma - neurosurgeon - migraines - stamford - andrew 23 12_glioblastoma_neurosurgeon_migraines_stamford
13 quinnipiac - hamden - dr - sheila - vaccination 21 13_quinnipiac_hamden_dr_sheila

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.