mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.2
This model is a fine-tuned version of 61347023S/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7018
- F1 Macro: 0.8729
- F1 Micro: 0.8745
- Accuracy Balanced: 0.8716
- Accuracy: 0.8745
- Precision Macro: 0.8748
- Recall Macro: 0.8716
- Precision Micro: 0.8745
- Recall Micro: 0.8745
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
Datasets | asadfgglie/nli-zh-tw-all/test | asadfgglie/BanBan_2024-10-17-facial_expressions-nli | eval_dataset |
---|---|---|---|
Accuracy | 0.875 | 0.953 | 0.871 |
Inference text/sec (RTX4090ti, batch=128) | 126.0 | 829.0 | 125.0 |
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 35
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
0.0962 | 0.17 | 200 | 0.5626 | 0.8709 | 0.8719 | 0.8714 | 0.8719 | 0.8704 | 0.8714 | 0.8719 | 0.8719 |
0.1218 | 0.34 | 400 | 0.5258 | 0.8635 | 0.8650 | 0.8629 | 0.8650 | 0.8643 | 0.8629 | 0.8650 | 0.8650 |
0.1246 | 0.51 | 600 | 0.4964 | 0.8652 | 0.8671 | 0.8635 | 0.8671 | 0.8679 | 0.8635 | 0.8671 | 0.8671 |
0.1225 | 0.68 | 800 | 0.5676 | 0.8618 | 0.8629 | 0.8623 | 0.8629 | 0.8614 | 0.8623 | 0.8629 | 0.8629 |
0.1429 | 0.85 | 1000 | 0.4402 | 0.8651 | 0.8666 | 0.8643 | 0.8666 | 0.8660 | 0.8643 | 0.8666 | 0.8666 |
0.1129 | 1.02 | 1200 | 0.5230 | 0.8688 | 0.8703 | 0.8679 | 0.8703 | 0.8699 | 0.8679 | 0.8703 | 0.8703 |
0.0921 | 1.19 | 1400 | 0.6435 | 0.8503 | 0.8534 | 0.8473 | 0.8534 | 0.8574 | 0.8473 | 0.8534 | 0.8534 |
0.0972 | 1.35 | 1600 | 0.5313 | 0.8635 | 0.8650 | 0.8628 | 0.8650 | 0.8644 | 0.8628 | 0.8650 | 0.8650 |
0.0883 | 1.52 | 1800 | 0.6088 | 0.8682 | 0.8692 | 0.8688 | 0.8692 | 0.8678 | 0.8688 | 0.8692 | 0.8692 |
0.0985 | 1.69 | 2000 | 0.5890 | 0.8696 | 0.8708 | 0.8693 | 0.8708 | 0.8698 | 0.8693 | 0.8708 | 0.8708 |
0.0838 | 1.86 | 2200 | 0.6647 | 0.8634 | 0.8650 | 0.8626 | 0.8650 | 0.8645 | 0.8626 | 0.8650 | 0.8650 |
0.0703 | 2.03 | 2400 | 0.6527 | 0.8712 | 0.8729 | 0.8699 | 0.8729 | 0.8732 | 0.8699 | 0.8729 | 0.8729 |
0.0639 | 2.2 | 2600 | 0.6665 | 0.8695 | 0.8714 | 0.8680 | 0.8714 | 0.8720 | 0.8680 | 0.8714 | 0.8714 |
0.059 | 2.37 | 2800 | 0.7361 | 0.8668 | 0.8687 | 0.8650 | 0.8687 | 0.8696 | 0.8650 | 0.8687 | 0.8687 |
0.062 | 2.54 | 3000 | 0.6719 | 0.8742 | 0.8756 | 0.8735 | 0.8756 | 0.8751 | 0.8735 | 0.8756 | 0.8756 |
0.0419 | 2.71 | 3200 | 0.7057 | 0.8734 | 0.8751 | 0.8722 | 0.8751 | 0.8753 | 0.8722 | 0.8751 | 0.8751 |
0.0539 | 2.88 | 3400 | 0.7020 | 0.8728 | 0.8745 | 0.8713 | 0.8745 | 0.8751 | 0.8713 | 0.8745 | 0.8745 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.5.1+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.